There are N problems numbered 1..N which you need to complete. You\'ve arranged the problems in increasing difficulty order, and the ith problem has estimated difficulty lev
Do we really need to go to path cover? Can't we just follow similar strategy as LIS.
The input is in increasing order of complexity. We just have to maintain a bunch of queues for tasks to be performed each day. Every element in the input will be assigned to a day by comparing the last elements of all queues. Wherever we find a difference of 'k' we append the task to that list.
For ex: 5 3 4 5 6
1) Input -> 5 (Empty lists so start a new one)
5
2) 3 (only list 5 & abs(5-3) is 2 (k) so append 3)
5--> 3
3) 4 (only list with last vi, 3 and abs(3-4) < k, so start a new list)
5--> 3
4
4) 5 again (abs(3-5)=k append)
5-->3-->5
4
5) 6 again (abs(5-6) < k but abs(4-6) = k) append to second list)
5-->3-->5
4-->6
We just need to maintain an array with last elements of each list. Since order of days (when tasks are to be done is not important) we can maintain a sorted list of last tasks therefore, searching a place to insert the new task is just looking for the value abs(vi-k) which can be done via binary search.
Complexity:
The loop runs for N elements. In the worst case , we may end up querying ceil value using binary search (log i) for many input[i].
Therefore, T(n) < O( log N! ) = O(N log N). Analyse to ensure that the upper and lower bounds are also O( N log N ). The complexity is THETA (N log N).