I have a transfer with products that unfortunately has to get matched by product name. The biggest issue here is I might get duplicate products on account of roman numbers.
I landed here searching for a small implementation of a Roman Numerals parser but wasn't satisfied by the provided answers in terms of size and elegance. I leave my final, recursive implementation here, to help others searching a small implementation.
XIIX)./[mdclxvi]*/i) roman numerals.// returns the value for a roman literal
private static int romanValue(int index)
{
int basefactor = ((index % 2) * 4 + 1); // either 1 or 5...
// ...multiplied with the exponentation of 10, if the literal is `x` or higher
return index > 1 ? (int) (basefactor * System.Math.Pow(10.0, index / 2)) : basefactor;
}
public static int FromRoman(string roman)
{
roman = roman.ToLower();
string literals = "mdclxvi";
int value = 0, index = 0;
foreach (char literal in literals)
{
value = romanValue(literals.Length - literals.IndexOf(literal) - 1);
index = roman.IndexOf(literal);
if (index > -1)
return FromRoman(roman.Substring(index + 1)) + (index > 0 ? value - FromRoman(roman.Substring(0, index)) : value);
}
return 0;
}
Try it using this .Netfiddle: https://dotnetfiddle.net/veaNk3
This algorithm calculates the value of a Roman Numeral by taking the highest value from the Roman Numeral and adding/subtracting recursively the value of the remaining left/right parts of the literal.
ii X iiv # Pick the greatest value in the literal `iixiiv` (symbolized by uppercase)
Then recursively reevaluate and subtract the lefthand-side and add the righthand-side:
(iiv) + x - (ii) # Subtract the lefthand-side, add the righthand-side
(V - (ii)) + x - ((I) + i) # Pick the greatest values, again
(v - ((I) + i)) + x - ((i) + i) # Pick the greatest value of the last numeral compound
Finally the numerals are substituted by their integer values:
(5 - ((1) + 1)) + 10 - ((1) + 1)
(5 - (2)) + 10 - (2)
3 + 10 - 2
= 11