I\'ve recently become interested in algorithms and have begun exploring them by writing a naive implementation and then optimizing it in various ways.
I\'m already f
A simple example to calculate the memory usage of a block of codes / function using memory_profile, while returning result of the function:
import memory_profiler as mp
def fun(n):
tmp = []
for i in range(n):
tmp.extend(list(range(i*i)))
return "XXXXX"
calculate memory usage before running the code then calculate max usage during the code:
start_mem = mp.memory_usage(max_usage=True)
res = mp.memory_usage(proc=(fun, [100]), max_usage=True, retval=True)
print('start mem', start_mem)
print('max mem', res[0][0])
print('used mem', res[0][0]-start_mem)
print('fun output', res[1])
calculate usage in sampling points while running function:
res = mp.memory_usage((fun, [100]), interval=.001, retval=True)
print('min mem', min(res[0]))
print('max mem', max(res[0]))
print('used mem', max(res[0])-min(res[0]))
print('fun output', res[1])
Credits: @skeept