I have a df time series. I extracted the indexes and want to convert them each to datetime. How do you go about doing that? I tried to use pa
I had the same issue, and tried the solution from @aikramer2, to add a column to my df of type 'datetime.datetime', but again i got a pandas data type:
#libraries used -
import pandas as pd
import datetime as dt
#loading data into a pandas df, from a local file. note column [1] contains a datetime column -
savedtweets = pd.read_csv('/Users/sharon/Documents/ipython/twitter_analysis/conftwit.csv', sep='\t',
names=['id', 'created_at_string', 'user.screen_name', 'text'],
parse_dates={"created_at" : [1]})
print int(max(savedtweets['id'])) #535073416026816512
print type(savedtweets['created_at'][0]) # result is
# add a column specifically using datetime.datetime library -
savedtweets['datetime'] = savedtweets['created_at'].apply(lambda x: dt.datetime(x.year,x.month,x.day))
print type(savedtweets['datetime'][0]) # result is
i suspect pandas df cannot store a datetime.datetime data type. I got success when i made a plain python list to store the datetime.datetime values:
savedtweets = pd.read_csv('/Users/swragg/Documents/ipython/twitter_analysis/conftwit.csv', sep='\t',
names=['id', 'created_at_string', 'user.screen_name', 'text'],
parse_dates={"created_at" : [1]})
print int(max(savedtweets['id'])) #535073416026816512
print type(savedtweets['created_at'][0]) #
savedtweets_datetime= [dt.datetime(x.year,x.month,x.day,x.hour,x.minute,x.second) for x in savedtweets['created_at']]
print savedtweets_datetime[0] # 2014-11-19 14:13:38
print savedtweets['created_at'][0] # 2014-11-19 14:13:38
print type(dt.datetime(2014,3,5,2,4)) #
print type(savedtweets['created_at'][0].year) #
print type(savedtweets_datetime) #