For those unfamiliar, one-hot encoding simply refers to converting a column of categories (i.e. a factor) into multiple columns of binary indicator variables where each new
Here you go:
dcast(melt(dt, id.vars='ID'), ID ~ variable + value, fun = length)
# ID Color_blue Color_green Color_red Shape_cirlce Shape_square Shape_triangle
#1: 1 0 1 0 0 1 0
#2: 2 0 0 1 0 0 1
#3: 3 0 0 1 0 1 0
#4: 4 1 0 0 0 0 1
#5: 5 0 1 0 1 0 0
To get the missing factors you can do the following:
res = dcast(melt(dt, id = 'ID', value.factor = T), ID ~ value, drop = F, fun = length)
setnames(res, c("ID", unlist(lapply(2:ncol(dt),
function(i) paste(names(dt)[i], levels(dt[[i]]), sep = "_")))))
res
# ID Color_blue Color_green Color_red Color_purple Shape_cirlce Shape_square Shape_triangle
#1: 1 0 1 0 0 0 1 0
#2: 2 0 0 1 0 0 0 1
#3: 3 0 0 1 0 0 1 0
#4: 4 1 0 0 0 0 0 1
#5: 5 0 1 0 0 1 0 0