I am trying improve the accuracy of Logistic regression algorithm implemented in Spark using Java. For this I\'m trying to replace Null or invalid values present in a column
You can use .na.fill function (it is a function in org.apache.spark.sql.DataFrameNaFunctions).
Basically the function you need is: def fill(value: String, cols: Seq[String]): DataFrame
You can choose the columns, and you choose the value you want to replace the null or NaN.
In your case it will be something like:
val df2 = df.na.fill("a", Seq("Name"))
.na.fill("a2", Seq("Place"))