In Swift, I created a SecKeyRef object by calling SecTrustCopyPublicKey on some raw X509 certificate data. This is what this SecKeyRef object looks like.
It is indeed possible to extract modulus and exponent using neither keychains nor private API.
There is the (public but undocumented) function SecKeyCopyAttributes which extracts a CFDictionary from a SecKey.
A useful source for attribute keys is SecItemConstants.c
Inspecting the content of this dictionary, we find an entry "v_Data" : . Its content is DER-encoded ASN for
SEQUENCE {
modulus INTEGER,
publicExponent INTEGER
}
Be aware that integers are padded with a zero byte if they are positive and have a leading 1-bit (so as not to confuse them with a two-complement negative number), so you may find one byte more than you expect. If that happens, just cut it away.
You can implement a parser for this format or, knowing your key size, hard-code the extraction. For 2048 bit keys (and 3-byte exponent), the format turns out to be:
30|82010(a|0) # Sequence of length 0x010(a|0)
02|82010(1|0) # Integer of length 0x010(1|0)
(00)?
02|03 # Integer of length 0x03
For a total of 10 + 1? + 256 + 3 = 269 or 270 bytes.
import Foundation
extension String: Error {}
func parsePublicSecKey(publicKey: SecKey) -> (mod: Data, exp: Data) {
let pubAttributes = SecKeyCopyAttributes(publicKey) as! [String: Any]
// Check that this is really an RSA key
guard Int(pubAttributes[kSecAttrKeyType as String] as! String)
== Int(kSecAttrKeyTypeRSA as String) else {
throw "Tried to parse non-RSA key as RSA key"
}
// Check that this is really a public key
guard Int(pubAttributes[kSecAttrKeyClass as String] as! String)
== Int(kSecAttrKeyClassPublic as String)
else {
throw "Tried to parse non-public key as public key"
}
let keySize = pubAttributes[kSecAttrKeySizeInBits as String] as! Int
// Extract values
let pubData = pubAttributes[kSecValueData as String] as! Data
var modulus = pubData.subdata(in: 8..<(pubData.count - 5))
let exponent = pubData.subdata(in: (pubData.count - 3).. keySize / 8 { // --> 257 bytes
modulus.removeFirst(1)
}
return (mod: modulus, exp: exponent)
}
(I ended up writing a full ASN parser, so this code is not tested, beware!)
Note that you can extract details of private keys in very much the same way. Using DER terminology, this is the format of v_Data:
PrivateKey ::= SEQUENCE {
version INTEGER,
modulus INTEGER, -- n
publicExponent INTEGER, -- e
privateExponent INTEGER, -- d
prime1 INTEGER, -- p
prime2 INTEGER, -- q
exponent1 INTEGER, -- d mod (p-1) (dmp1)
exponent2 INTEGER, -- d mod (q-1) (dmq1)
coefficient INTEGER, -- (inverse of q) mod p (coeff)
otherPrimeInfos OtherPrimeInfos OPTIONAL
}
Parsing this by hand is probably ill-advised since any of the integers may have been padded.
Nota bene: The format of the public key is different if the key has been generated on macOS; the structure given above is wrapped like so:
SEQUENCE {
id OBJECTID,
PublicKey BITSTRING
}
The bit-string is DER-encoded ASN of the form above.