How to get most informative features for scikit-learn classifier for different class?

后端 未结 3 1552
伪装坚强ぢ
伪装坚强ぢ 2020-12-05 12:50

NLTK package provides a method show_most_informative_features() to find the most important features for both class, with output like:

   contai         


        
3条回答
  •  渐次进展
    2020-12-05 12:56

    In the case of binary classification, it seems like the coefficient array has been flatten.

    Let's try to relabel our data with only two labels:

    import codecs, re, time
    from itertools import chain
    
    import numpy as np
    
    from sklearn.feature_extraction.text import CountVectorizer
    from sklearn.naive_bayes import MultinomialNB
    
    trainfile = 'train.txt'
    
    # Vectorizing data.
    train = []
    word_vectorizer = CountVectorizer(analyzer='word')
    trainset = word_vectorizer.fit_transform(codecs.open(trainfile,'r','utf8'))
    tags = ['bs','pt','bs','pt']
    
    # Training NB
    mnb = MultinomialNB()
    mnb.fit(trainset, tags)
    
    print mnb.classes_
    print mnb.coef_[0]
    print mnb.coef_[1]
    

    [out]:

    ['bs' 'pt']
    [-5.55682806 -4.86368088 -4.86368088 -5.55682806 -5.55682806 -5.55682806
     -4.86368088 -4.86368088 -5.55682806 -5.55682806 -4.86368088 -4.86368088
     -4.1705337  -5.55682806 -4.86368088 -5.55682806 -4.86368088 -5.55682806
     -5.55682806 -5.55682806 -4.86368088 -4.45821577 -4.86368088 -4.86368088
     -4.86368088 -4.86368088 -5.55682806 -4.86368088 -5.55682806 -4.86368088
     -4.86368088 -4.86368088 -4.86368088 -4.86368088 -5.55682806 -5.55682806
     -5.55682806 -5.55682806 -5.55682806 -4.45821577 -4.86368088 -4.86368088
     -4.86368088 -4.86368088 -4.86368088 -5.55682806 -5.55682806 -4.86368088
     -4.86368088 -4.86368088 -4.86368088 -5.55682806 -4.86368088 -4.86368088
     -4.86368088 -5.55682806 -5.55682806 -5.55682806 -5.55682806 -5.55682806
     -5.55682806 -5.55682806 -5.55682806 -4.86368088 -4.86368088 -4.86368088
     -4.86368088 -5.55682806 -5.55682806 -4.86368088 -5.55682806 -4.86368088
     -5.55682806 -5.55682806 -4.86368088 -4.86368088 -4.45821577 -4.86368088
     -4.86368088 -4.45821577 -4.86368088 -4.86368088 -4.86368088 -5.55682806
     -4.86368088 -5.55682806 -5.55682806 -4.86368088 -5.55682806 -5.55682806
     -4.86368088 -5.55682806 -4.86368088 -4.86368088 -4.86368088 -5.55682806
     -5.55682806 -5.55682806 -4.86368088 -4.86368088 -5.55682806 -4.86368088
     -5.55682806 -4.86368088 -5.55682806 -4.86368088 -5.55682806 -5.55682806
     -5.55682806 -4.86368088 -4.86368088 -5.55682806 -4.86368088 -4.86368088
     -4.86368088 -4.1705337  -4.86368088 -4.86368088 -5.55682806 -4.86368088
     -4.86368088 -4.86368088 -4.86368088 -4.86368088 -5.55682806 -4.86368088
     -4.86368088 -4.86368088 -5.55682806 -4.86368088 -4.86368088 -4.86368088
     -4.86368088 -4.86368088 -4.86368088 -5.55682806 -4.86368088 -4.86368088
     -5.55682806 -5.55682806 -4.86368088 -4.86368088 -4.86368088 -4.86368088
     -4.86368088 -4.86368088 -5.55682806 -4.86368088 -4.86368088 -5.55682806
     -4.86368088 -4.45821577 -4.86368088 -4.86368088]
    Traceback (most recent call last):
      File "test.py", line 24, in 
        print mnb.coef_[1]
    IndexError: index 1 is out of bounds for axis 0 with size 1
    

    So let's do some diagnostics:

    print mnb.feature_count_
    print mnb.coef_[0]
    

    [out]:

    [[ 1.  0.  0.  1.  1.  1.  0.  0.  1.  1.  0.  0.  0.  1.  0.  1.  0.  1.
       1.  1.  2.  2.  0.  0.  0.  1.  1.  0.  1.  0.  0.  0.  0.  0.  2.  1.
       1.  1.  1.  0.  0.  0.  0.  0.  0.  1.  1.  0.  0.  0.  0.  1.  0.  0.
       0.  1.  1.  1.  1.  1.  1.  1.  1.  0.  0.  0.  0.  1.  1.  0.  1.  0.
       1.  2.  0.  0.  0.  0.  0.  0.  0.  0.  0.  1.  0.  1.  1.  0.  1.  1.
       0.  1.  0.  0.  0.  1.  1.  1.  0.  0.  1.  0.  1.  0.  1.  0.  1.  1.
       1.  0.  0.  1.  0.  0.  0.  4.  0.  0.  1.  0.  0.  0.  0.  0.  1.  0.
       0.  0.  1.  0.  0.  0.  0.  0.  0.  1.  0.  0.  1.  1.  0.  0.  0.  0.
       0.  0.  1.  0.  0.  1.  0.  0.  0.  0.]
     [ 0.  1.  1.  0.  0.  0.  1.  1.  0.  0.  1.  1.  3.  0.  1.  0.  1.  0.
       0.  0.  1.  2.  1.  1.  1.  1.  0.  1.  0.  1.  1.  1.  1.  1.  0.  0.
       0.  0.  0.  2.  1.  1.  1.  1.  1.  0.  0.  1.  1.  1.  1.  0.  1.  1.
       1.  0.  0.  0.  0.  0.  0.  0.  0.  1.  1.  1.  1.  0.  0.  1.  0.  1.
       0.  0.  1.  1.  2.  1.  1.  2.  1.  1.  1.  0.  1.  0.  0.  1.  0.  0.
       1.  0.  1.  1.  1.  0.  0.  0.  1.  1.  0.  1.  0.  1.  0.  1.  0.  0.
       0.  1.  1.  0.  1.  1.  1.  3.  1.  1.  0.  1.  1.  1.  1.  1.  0.  1.
       1.  1.  0.  1.  1.  1.  1.  1.  1.  0.  1.  1.  0.  0.  1.  1.  1.  1.
       1.  1.  0.  1.  1.  0.  1.  2.  1.  1.]]
    [-5.55682806 -4.86368088 -4.86368088 -5.55682806 -5.55682806 -5.55682806
     -4.86368088 -4.86368088 -5.55682806 -5.55682806 -4.86368088 -4.86368088
     -4.1705337  -5.55682806 -4.86368088 -5.55682806 -4.86368088 -5.55682806
     -5.55682806 -5.55682806 -4.86368088 -4.45821577 -4.86368088 -4.86368088
     -4.86368088 -4.86368088 -5.55682806 -4.86368088 -5.55682806 -4.86368088
     -4.86368088 -4.86368088 -4.86368088 -4.86368088 -5.55682806 -5.55682806
     -5.55682806 -5.55682806 -5.55682806 -4.45821577 -4.86368088 -4.86368088
     -4.86368088 -4.86368088 -4.86368088 -5.55682806 -5.55682806 -4.86368088
     -4.86368088 -4.86368088 -4.86368088 -5.55682806 -4.86368088 -4.86368088
     -4.86368088 -5.55682806 -5.55682806 -5.55682806 -5.55682806 -5.55682806
     -5.55682806 -5.55682806 -5.55682806 -4.86368088 -4.86368088 -4.86368088
     -4.86368088 -5.55682806 -5.55682806 -4.86368088 -5.55682806 -4.86368088
     -5.55682806 -5.55682806 -4.86368088 -4.86368088 -4.45821577 -4.86368088
     -4.86368088 -4.45821577 -4.86368088 -4.86368088 -4.86368088 -5.55682806
     -4.86368088 -5.55682806 -5.55682806 -4.86368088 -5.55682806 -5.55682806
     -4.86368088 -5.55682806 -4.86368088 -4.86368088 -4.86368088 -5.55682806
     -5.55682806 -5.55682806 -4.86368088 -4.86368088 -5.55682806 -4.86368088
     -5.55682806 -4.86368088 -5.55682806 -4.86368088 -5.55682806 -5.55682806
     -5.55682806 -4.86368088 -4.86368088 -5.55682806 -4.86368088 -4.86368088
     -4.86368088 -4.1705337  -4.86368088 -4.86368088 -5.55682806 -4.86368088
     -4.86368088 -4.86368088 -4.86368088 -4.86368088 -5.55682806 -4.86368088
     -4.86368088 -4.86368088 -5.55682806 -4.86368088 -4.86368088 -4.86368088
     -4.86368088 -4.86368088 -4.86368088 -5.55682806 -4.86368088 -4.86368088
     -5.55682806 -5.55682806 -4.86368088 -4.86368088 -4.86368088 -4.86368088
     -4.86368088 -4.86368088 -5.55682806 -4.86368088 -4.86368088 -5.55682806
     -4.86368088 -4.45821577 -4.86368088 -4.86368088]
    

    Seems like the features are counted and then when vectorized it was flattened to save memory, so let's try:

    index = 0
    coef_features_c1_c2 = []
    
    for feat, c1, c2 in zip(word_vectorizer.get_feature_names(), mnb.feature_count_[0], mnb.feature_count_[1]):
        coef_features_c1_c2.append(tuple([mnb.coef_[0][index], feat, c1, c2]))
        index+=1
    
    for i in sorted(coef_features_c1_c2):
        print i
    

    [out]:

    (-5.5568280616995374, u'acuerdo', 1.0, 0.0)
    (-5.5568280616995374, u'al', 1.0, 0.0)
    (-5.5568280616995374, u'alex', 1.0, 0.0)
    (-5.5568280616995374, u'algo', 1.0, 0.0)
    (-5.5568280616995374, u'andaba', 1.0, 0.0)
    (-5.5568280616995374, u'andrea', 1.0, 0.0)
    (-5.5568280616995374, u'bien', 1.0, 0.0)
    (-5.5568280616995374, u'buscando', 1.0, 0.0)
    (-5.5568280616995374, u'como', 1.0, 0.0)
    (-5.5568280616995374, u'con', 1.0, 0.0)
    (-5.5568280616995374, u'conseguido', 1.0, 0.0)
    (-5.5568280616995374, u'distancia', 1.0, 0.0)
    (-5.5568280616995374, u'doprinese', 1.0, 0.0)
    (-5.5568280616995374, u'es', 2.0, 0.0)
    (-5.5568280616995374, u'est\xe1', 1.0, 0.0)
    (-5.5568280616995374, u'eulex', 1.0, 0.0)
    (-5.5568280616995374, u'excusa', 1.0, 0.0)
    (-5.5568280616995374, u'fama', 1.0, 0.0)
    (-5.5568280616995374, u'guasch', 1.0, 0.0)
    (-5.5568280616995374, u'ha', 1.0, 0.0)
    (-5.5568280616995374, u'incident', 1.0, 0.0)
    (-5.5568280616995374, u'ispit', 1.0, 0.0)
    (-5.5568280616995374, u'istragu', 1.0, 0.0)
    (-5.5568280616995374, u'izbijanju', 1.0, 0.0)
    (-5.5568280616995374, u'ja\u010danju', 1.0, 0.0)
    (-5.5568280616995374, u'je', 1.0, 0.0)
    (-5.5568280616995374, u'jedan', 1.0, 0.0)
    (-5.5568280616995374, u'jo\u0161', 1.0, 0.0)
    (-5.5568280616995374, u'kapaciteta', 1.0, 0.0)
    (-5.5568280616995374, u'kosova', 1.0, 0.0)
    (-5.5568280616995374, u'la', 1.0, 0.0)
    (-5.5568280616995374, u'lequio', 1.0, 0.0)
    (-5.5568280616995374, u'llevar', 1.0, 0.0)
    (-5.5568280616995374, u'lo', 2.0, 0.0)
    (-5.5568280616995374, u'misije', 1.0, 0.0)
    (-5.5568280616995374, u'muy', 1.0, 0.0)
    (-5.5568280616995374, u'm\xe1s', 1.0, 0.0)
    (-5.5568280616995374, u'na', 1.0, 0.0)
    (-5.5568280616995374, u'nada', 1.0, 0.0)
    (-5.5568280616995374, u'nasilja', 1.0, 0.0)
    (-5.5568280616995374, u'no', 1.0, 0.0)
    (-5.5568280616995374, u'obaviti', 1.0, 0.0)
    (-5.5568280616995374, u'obe\u0107ao', 1.0, 0.0)
    (-5.5568280616995374, u'parecer', 1.0, 0.0)
    (-5.5568280616995374, u'pone', 1.0, 0.0)
    (-5.5568280616995374, u'por', 1.0, 0.0)
    (-5.5568280616995374, u'po\u0161to', 1.0, 0.0)
    (-5.5568280616995374, u'prava', 1.0, 0.0)
    (-5.5568280616995374, u'predstavlja', 1.0, 0.0)
    (-5.5568280616995374, u'pro\u0161losedmi\u010dnom', 1.0, 0.0)
    (-5.5568280616995374, u'relaci\xf3n', 1.0, 0.0)
    (-5.5568280616995374, u'sjeveru', 1.0, 0.0)
    (-5.5568280616995374, u'taj', 1.0, 0.0)
    (-5.5568280616995374, u'una', 1.0, 0.0)
    (-5.5568280616995374, u'visto', 1.0, 0.0)
    (-5.5568280616995374, u'vladavine', 1.0, 0.0)
    (-5.5568280616995374, u'ya', 1.0, 0.0)
    (-5.5568280616995374, u'\u0107e', 1.0, 0.0)
    (-4.863680881139592, u'aj', 0.0, 1.0)
    (-4.863680881139592, u'ajudou', 0.0, 1.0)
    (-4.863680881139592, u'alpsk\xfdmi', 0.0, 1.0)
    (-4.863680881139592, u'alpy', 0.0, 1.0)
    (-4.863680881139592, u'ao', 0.0, 1.0)
    (-4.863680881139592, u'apresenta', 0.0, 1.0)
    (-4.863680881139592, u'bl\xedzko', 0.0, 1.0)
    (-4.863680881139592, u'come\xe7o', 0.0, 1.0)
    (-4.863680881139592, u'da', 2.0, 1.0)
    (-4.863680881139592, u'decepcionantes', 0.0, 1.0)
    (-4.863680881139592, u'deti', 0.0, 1.0)
    (-4.863680881139592, u'dificuldades', 0.0, 1.0)
    (-4.863680881139592, u'dif\xedcil', 1.0, 1.0)
    (-4.863680881139592, u'do', 0.0, 1.0)
    (-4.863680881139592, u'druh', 0.0, 1.0)
    (-4.863680881139592, u'd\xe1', 0.0, 1.0)
    (-4.863680881139592, u'ela', 0.0, 1.0)
    (-4.863680881139592, u'encontrar', 0.0, 1.0)
    (-4.863680881139592, u'enfrentar', 0.0, 1.0)
    (-4.863680881139592, u'for\xe7as', 0.0, 1.0)
    (-4.863680881139592, u'furiosa', 0.0, 1.0)
    (-4.863680881139592, u'golf', 0.0, 1.0)
    (-4.863680881139592, u'golfistami', 0.0, 1.0)
    (-4.863680881139592, u'golfov\xfdch', 0.0, 1.0)
    (-4.863680881139592, u'hotelmi', 0.0, 1.0)
    (-4.863680881139592, u'hra\u0165', 0.0, 1.0)
    (-4.863680881139592, u'ide', 0.0, 1.0)
    (-4.863680881139592, u'ihr\xedsk', 0.0, 1.0)
    (-4.863680881139592, u'intranspon\xedveis', 0.0, 1.0)
    (-4.863680881139592, u'in\xedcio', 0.0, 1.0)
    (-4.863680881139592, u'in\xfd', 0.0, 1.0)
    (-4.863680881139592, u'kde', 0.0, 1.0)
    (-4.863680881139592, u'kombin\xe1cie', 0.0, 1.0)
    (-4.863680881139592, u'komplex', 0.0, 1.0)
    (-4.863680881139592, u'kon\u010diarmi', 0.0, 1.0)
    (-4.863680881139592, u'lado', 0.0, 1.0)
    (-4.863680881139592, u'lete', 0.0, 1.0)
    (-4.863680881139592, u'longo', 0.0, 1.0)
    (-4.863680881139592, u'ly\u017eova\u0165', 0.0, 1.0)
    (-4.863680881139592, u'man\u017eelky', 0.0, 1.0)
    (-4.863680881139592, u'mas', 0.0, 1.0)
    (-4.863680881139592, u'mesmo', 0.0, 1.0)
    (-4.863680881139592, u'meu', 0.0, 1.0)
    (-4.863680881139592, u'minha', 0.0, 1.0)
    (-4.863680881139592, u'mo\u017enos\u0165ami', 0.0, 1.0)
    (-4.863680881139592, u'm\xe3e', 0.0, 1.0)
    (-4.863680881139592, u'nad\u0161en\xfdmi', 0.0, 1.0)
    (-4.863680881139592, u'negativas', 0.0, 1.0)
    (-4.863680881139592, u'nie', 0.0, 1.0)
    (-4.863680881139592, u'nieko\u013ek\xfdch', 0.0, 1.0)
    (-4.863680881139592, u'para', 0.0, 1.0)
    (-4.863680881139592, u'parecem', 0.0, 1.0)
    (-4.863680881139592, u'pod', 0.0, 1.0)
    (-4.863680881139592, u'pon\xfakaj\xfa', 0.0, 1.0)
    (-4.863680881139592, u'potrebuj\xfa', 0.0, 1.0)
    (-4.863680881139592, u'pri', 0.0, 1.0)
    (-4.863680881139592, u'prova\xe7\xf5es', 0.0, 1.0)
    (-4.863680881139592, u'punham', 0.0, 1.0)
    (-4.863680881139592, u'qual', 0.0, 1.0)
    (-4.863680881139592, u'qualquer', 0.0, 1.0)
    (-4.863680881139592, u'quem', 0.0, 1.0)
    (-4.863680881139592, u'rak\xfaske', 0.0, 1.0)
    (-4.863680881139592, u'rezortov', 0.0, 1.0)
    (-4.863680881139592, u'sa', 0.0, 1.0)
    (-4.863680881139592, u'sebe', 0.0, 1.0)
    (-4.863680881139592, u'sempre', 0.0, 1.0)
    (-4.863680881139592, u'situa\xe7\xf5es', 0.0, 1.0)
    (-4.863680881139592, u'spojen\xfdch', 0.0, 1.0)
    (-4.863680881139592, u'suplantar', 0.0, 1.0)
    (-4.863680881139592, u's\xfa', 0.0, 1.0)
    (-4.863680881139592, u'tak', 0.0, 1.0)
    (-4.863680881139592, u'talianske', 0.0, 1.0)
    (-4.863680881139592, u'teve', 0.0, 1.0)
    (-4.863680881139592, u'tive', 0.0, 1.0)
    (-4.863680881139592, u'todas', 0.0, 1.0)
    (-4.863680881139592, u'tr\xe1venia', 0.0, 1.0)
    (-4.863680881139592, u've\u013ek\xfd', 0.0, 1.0)
    (-4.863680881139592, u'vida', 0.0, 1.0)
    (-4.863680881139592, u'vo', 0.0, 1.0)
    (-4.863680881139592, u'vo\u013en\xe9ho', 0.0, 1.0)
    (-4.863680881139592, u'vysok\xfdmi', 0.0, 1.0)
    (-4.863680881139592, u'vy\u017eitia', 0.0, 1.0)
    (-4.863680881139592, u'v\xe4\u010d\u0161ine', 0.0, 1.0)
    (-4.863680881139592, u'v\u017edy', 0.0, 1.0)
    (-4.863680881139592, u'zauj\xedmav\xe9', 0.0, 1.0)
    (-4.863680881139592, u'zime', 0.0, 1.0)
    (-4.863680881139592, u'\u010dasu', 0.0, 1.0)
    (-4.863680881139592, u'\u010fal\u0161\xedmi', 0.0, 1.0)
    (-4.863680881139592, u'\u0161vaj\u010diarske', 0.0, 1.0)
    (-4.4582157730314274, u'de', 2.0, 2.0)
    (-4.4582157730314274, u'foi', 0.0, 2.0)
    (-4.4582157730314274, u'mais', 0.0, 2.0)
    (-4.4582157730314274, u'me', 0.0, 2.0)
    (-4.4582157730314274, u'\u010di', 0.0, 2.0)
    (-4.1705337005796466, u'as', 0.0, 3.0)
    (-4.1705337005796466, u'que', 4.0, 3.0)
    

    Now we see some patterns... Seems like the higher coefficient favors a class and the other tail favors the other, so you can simply do this:

    import codecs, re, time
    from itertools import chain
    
    import numpy as np
    
    from sklearn.feature_extraction.text import CountVectorizer
    from sklearn.naive_bayes import MultinomialNB
    
    trainfile = 'train.txt'
    
    # Vectorizing data.
    train = []
    word_vectorizer = CountVectorizer(analyzer='word')
    trainset = word_vectorizer.fit_transform(codecs.open(trainfile,'r','utf8'))
    tags = ['bs','pt','bs','pt']
    
    # Training NB
    mnb = MultinomialNB()
    mnb.fit(trainset, tags)
    
    def most_informative_feature_for_binary_classification(vectorizer, classifier, n=10):
        class_labels = classifier.classes_
        feature_names = vectorizer.get_feature_names()
        topn_class1 = sorted(zip(classifier.coef_[0], feature_names))[:n]
        topn_class2 = sorted(zip(classifier.coef_[0], feature_names))[-n:]
    
        for coef, feat in topn_class1:
            print class_labels[0], coef, feat
    
        print
    
        for coef, feat in reversed(topn_class2):
            print class_labels[1], coef, feat
    
    
    most_informative_feature_for_binary_classification(word_vectorizer, mnb)
    

    [out]:

    bs -5.5568280617 acuerdo
    bs -5.5568280617 al
    bs -5.5568280617 alex
    bs -5.5568280617 algo
    bs -5.5568280617 andaba
    bs -5.5568280617 andrea
    bs -5.5568280617 bien
    bs -5.5568280617 buscando
    bs -5.5568280617 como
    bs -5.5568280617 con
    
    pt -4.17053370058 que
    pt -4.17053370058 as
    pt -4.45821577303 či
    pt -4.45821577303 me
    pt -4.45821577303 mais
    pt -4.45821577303 foi
    pt -4.45821577303 de
    pt -4.86368088114 švajčiarske
    pt -4.86368088114 ďalšími
    pt -4.86368088114 času
    

    Actually if you've read @larsmans comment carefully, he gave the hint on the binary classes' coefficient in How to get most informative features for scikit-learn classifiers?

提交回复
热议问题