I am helping a friend with a work related project where, he needs to calculate the maximum capacity from a node a to a node b, where the edge has a capacity. However the max
I would use some variant of Dijkstra's. I took the pseudo code below directly from Wikipedia and only changed 5 small things:
dist to width (from line 3 on)width to -infinity (line 3)infinity (line 8)-infinity (line 14)1 function Dijkstra(Graph, source):
2 for each vertex v in Graph: // Initializations
3 width[v] := -infinity ; // Unknown width function from
4 // source to v
5 previous[v] := undefined ; // Previous node in optimal path
6 end for // from source
7
8 width[source] := infinity ; // Width from source to source
9 Q := the set of all nodes in Graph ; // All nodes in the graph are
10 // unoptimized – thus are in Q
11 while Q is not empty: // The main loop
12 u := vertex in Q with largest width in width[] ; // Source node in first case
13 remove u from Q ;
14 if width[u] = -infinity:
15 break ; // all remaining vertices are
16 end if // inaccessible from source
17
18 for each neighbor v of u: // where v has not yet been
19 // removed from Q.
20 alt := max(width[v], min(width[u], width_between(u, v))) ;
21 if alt > width[v]: // Relax (u,v,a)
22 width[v] := alt ;
23 previous[v] := u ;
24 decrease-key v in Q; // Reorder v in the Queue
25 end if
26 end for
27 end while
28 return width;
29 endfunction
Some (handwaving) explanation why this works: you start with the source. From there, you have infinite capacity to itself. Now you check all neighbors of the source. Assume the edges don't all have the same capacity (in your example, say (s, a) = 300). Then, there is no better way to reach b then via (s, b), so you know the best case capacity of b. You continue going to the best neighbors of the known set of vertices, until you reach all vertices.