I have two dataframes like so:
set.seed(1)
df <- cbind(expand.grid(x=1:3, y=1:5), time=round(runif(15)*30))
to.merge <- data.frame(x=c(2, 2, 2, 3, 2),
Use data.table and roll='nearest' or to limit to 1, roll = 1, rollends = c(TRUE,TRUE)
eg
library(data.table)
# create data.tables with the same key columns (x, y, time)
DT <- data.table(df, key = names(df))
tm <- data.table(to.merge, key = key(DT))
# use join syntax with roll = 'nearest'
tm[DT, roll='nearest']
# x y time val
# 1: 1 1 8 NA
# 2: 1 2 27 NA
# 3: 1 3 28 NA
# 4: 1 4 2 NA
# 5: 1 5 21 NA
# 6: 2 1 11 c
# 7: 2 2 6 NA
# 8: 2 3 20 NA
# 9: 2 4 6 e
# 10: 2 5 12 NA
# 11: 3 1 17 NA
# 12: 3 2 27 NA
# 13: 3 3 19 NA
# 14: 3 4 5 NA
# 15: 3 5 23 d
You can limit your self to looking forward and back (1) by setting roll=-1 and rollends = c(TRUE,TRUE)
new <- tm[DT, roll=-1, rollends =c(TRUE,TRUE)]
new
x y time val
1: 1 1 8 NA
2: 1 2 27 NA
3: 1 3 28 NA
4: 1 4 2 NA
5: 1 5 21 NA
6: 2 1 11 c
7: 2 2 6 NA
8: 2 3 20 NA
9: 2 4 6 NA
10: 2 5 12 NA
11: 3 1 17 NA
12: 3 2 27 NA
13: 3 3 19 NA
14: 3 4 5 NA
15: 3 5 23 d
Or you can roll=1 first, then roll=-1, then combine the results (tidying up the val.1 column from the second rolling join)
new <- tm[DT, roll = 1][tm[DT,roll=-1]][is.na(val), val := ifelse(is.na(val.1),val,val.1)][,val.1 := NULL]
new
x y time val
1: 1 1 8 NA
2: 1 2 27 NA
3: 1 3 28 NA
4: 1 4 2 NA
5: 1 5 21 NA
6: 2 1 11 c
7: 2 2 6 NA
8: 2 3 20 NA
9: 2 4 6 NA
10: 2 5 12 NA
11: 3 1 17 NA
12: 3 2 27 NA
13: 3 3 19 NA
14: 3 4 5 NA
15: 3 5 23 d