I\'m trying to use scikit-learn\'s LabelEncoder
to encode a pandas DataFrame
of string labels. As the dataframe has many (50+) columns, I want to a
import pandas as pd
from sklearn.preprocessing import LabelEncoder
train=pd.read_csv('.../train.csv')
#X=train.loc[:,['waterpoint_type_group','status','waterpoint_type','source_class']].values
# Create a label encoder object
def MultiLabelEncoder(columnlist,dataframe):
for i in columnlist:
labelencoder_X=LabelEncoder()
dataframe[i]=labelencoder_X.fit_transform(dataframe[i])
columnlist=['waterpoint_type_group','status','waterpoint_type','source_class','source_type']
MultiLabelEncoder(columnlist,train)
Here i am reading a csv from location and in function i am passing the column list i want to labelencode and the dataframe I want to apply this.