I\'m trying to use scikit-learn\'s LabelEncoder
to encode a pandas DataFrame
of string labels. As the dataframe has many (50+) columns, I want to a
Following up on the comments raised on the solution of @PriceHardman I would propose the following version of the class:
class LabelEncodingColoumns(BaseEstimator, TransformerMixin):
def __init__(self, cols=None):
pdu._is_cols_input_valid(cols)
self.cols = cols
self.les = {col: LabelEncoder() for col in cols}
self._is_fitted = False
def transform(self, df, **transform_params):
"""
Scaling ``cols`` of ``df`` using the fitting
Parameters
----------
df : DataFrame
DataFrame to be preprocessed
"""
if not self._is_fitted:
raise NotFittedError("Fitting was not preformed")
pdu._is_cols_subset_of_df_cols(self.cols, df)
df = df.copy()
label_enc_dict = {}
for col in self.cols:
label_enc_dict[col] = self.les[col].transform(df[col])
labelenc_cols = pd.DataFrame(label_enc_dict,
# The index of the resulting DataFrame should be assigned and
# equal to the one of the original DataFrame. Otherwise, upon
# concatenation NaNs will be introduced.
index=df.index
)
for col in self.cols:
df[col] = labelenc_cols[col]
return df
def fit(self, df, y=None, **fit_params):
"""
Fitting the preprocessing
Parameters
----------
df : DataFrame
Data to use for fitting.
In many cases, should be ``X_train``.
"""
pdu._is_cols_subset_of_df_cols(self.cols, df)
for col in self.cols:
self.les[col].fit(df[col])
self._is_fitted = True
return self
This class fits the encoder on the training set and uses the fitted version when transforming. Initial version of the code can be found here.