I\'m trying to use scikit-learn\'s LabelEncoder
to encode a pandas DataFrame
of string labels. As the dataframe has many (50+) columns, I want to a
It is possible to do this all in pandas directly and is well-suited for a unique ability of the replace
method.
First, let's make a dictionary of dictionaries mapping the columns and their values to their new replacement values.
transform_dict = {}
for col in df.columns:
cats = pd.Categorical(df[col]).categories
d = {}
for i, cat in enumerate(cats):
d[cat] = i
transform_dict[col] = d
transform_dict
{'location': {'New_York': 0, 'San_Diego': 1},
'owner': {'Brick': 0, 'Champ': 1, 'Ron': 2, 'Veronica': 3},
'pets': {'cat': 0, 'dog': 1, 'monkey': 2}}
Since this will always be a one to one mapping, we can invert the inner dictionary to get a mapping of the new values back to the original.
inverse_transform_dict = {}
for col, d in transform_dict.items():
inverse_transform_dict[col] = {v:k for k, v in d.items()}
inverse_transform_dict
{'location': {0: 'New_York', 1: 'San_Diego'},
'owner': {0: 'Brick', 1: 'Champ', 2: 'Ron', 3: 'Veronica'},
'pets': {0: 'cat', 1: 'dog', 2: 'monkey'}}
Now, we can use the unique ability of the replace
method to take a nested list of dictionaries and use the outer keys as the columns, and the inner keys as the values we would like to replace.
df.replace(transform_dict)
location owner pets
0 1 1 0
1 0 2 1
2 0 0 0
3 1 1 2
4 1 3 1
5 0 2 1
We can easily go back to the original by again chaining the replace
method
df.replace(transform_dict).replace(inverse_transform_dict)
location owner pets
0 San_Diego Champ cat
1 New_York Ron dog
2 New_York Brick cat
3 San_Diego Champ monkey
4 San_Diego Veronica dog
5 New_York Ron dog