I have to get distance from different markers on the map to the current location of the device and the pick up the shortest one. I have the lat and long for the markers and
I thought it should not be too difficult to extend my KDTree (see my other answer) also to a 3 dimensional version, and here is the result. But as I do not use this version myself so far, take it with care. I added a unit-test, which shows that it works at least for your example.
/** 3 dimensional implementation of a KDTree for LatLng coordinates. */
public class KDTree {
private XYZComparator xComparator = new XYZComparator(0);
private XYZComparator yComparator = new XYZComparator(1);
private XYZComparator zComparator = new XYZComparator(2);
private XYZComparator[] comparators = { xComparator, yComparator,
zComparator };
/**
* Create a KDTree from a list of lat/lon coordinates. Returns the root-node
* of the tree.
*/
public KDTNode createTree(List recList) {
List xyzList = convertTo3Dimensions(recList);
return createTreeRecursive(0, xyzList);
}
/**
* Traverse the tree and find the point nearest to wp.
*/
static public LatLng findNearestWp(KDTNode root, LatLng wp) {
KDTResult result = new KDTResult();
XYZ xyz = convertTo3Dimensions(wp);
findNearestWpRecursive(root, xyz, result);
return result.nearestWp;
}
/** Convert lat/lon coordinates into a 3 dimensional xyz system. */
private static XYZ convertTo3Dimensions(LatLng wp) {
// See e.g.
// http://stackoverflow.com/questions/8981943/lat-long-to-x-y-z-position-in-js-not-working
double cosLat = Math.cos(wp.latitude * Math.PI / 180.0);
double sinLat = Math.sin(wp.latitude * Math.PI / 180.0);
double cosLon = Math.cos(wp.longitude * Math.PI / 180.0);
double sinLon = Math.sin(wp.longitude * Math.PI / 180.0);
double rad = 6378137.0;
double f = 1.0 / 298.257224;
double C = 1.0 / Math.sqrt(cosLat * cosLat + (1 - f) * (1 - f) * sinLat
* sinLat);
double S = (1.0 - f) * (1.0 - f) * C;
XYZ result = new XYZ();
result.x = (rad * C) * cosLat * cosLon;
result.y = (rad * C) * cosLat * sinLon;
result.z = (rad * S) * sinLat;
result.wp = wp;
return result;
}
private List convertTo3Dimensions(List recList) {
List result = new ArrayList();
for (LatLng latLng : recList) {
XYZ xyz = convertTo3Dimensions(latLng);
result.add(xyz);
}
return result;
}
private static void findNearestWpRecursive(KDTNode node, XYZ wp,
KDTResult result) {
/* If a leaf node, calculate distance and return. */
if (node.isLeaf) {
double xDiff = node.xyz.x - wp.x;
double yDiff = node.xyz.y - wp.y;
double zDiff = node.xyz.z - wp.z;
double squareDist = xDiff * xDiff + yDiff * yDiff + zDiff * zDiff;
// Replace a previously found nearestDest only if the new one is
// nearer.
if (result.nearestWp == null || result.squareDistance > squareDist) {
result.nearestWp = node.xyz.wp;
result.squareDistance = squareDist;
}
return;
}
int devidedByDimension = node.depth % 3;
boolean goLeft;
/* Check whether left or right is more promising. */
if (devidedByDimension == 0) {
goLeft = wp.x < node.splitValue;
} else if (devidedByDimension == 1) {
goLeft = wp.y < node.splitValue;
} else {
goLeft = wp.z < node.splitValue;
}
KDTNode child = goLeft ? node.left : node.right;
findNearestWpRecursive(child, wp, result);
/*
* Check whether result needs to be checked also against the less
* promising side.
*/
if (result.squareDistance > node.minSquareDistance) {
KDTNode otherChild = goLeft ? node.right : node.left;
findNearestWpRecursive(otherChild, wp, result);
}
}
private KDTNode createTreeRecursive(int depth, List recList) {
KDTNode node = new KDTNode();
node.depth = depth;
if (recList.size() == 1) {
// Leafnode found
node.isLeaf = true;
node.xyz = recList.get(0);
return node;
}
int dimension = node.depth % 3;
sortWayPointListByDimension(recList, dimension);
List leftList = getHalfOf(recList, true);
List rightList = getHalfOf(recList, false);
// Get split point and distance to last left and first right point.
XYZ lastLeft = leftList.get(leftList.size() - 1);
XYZ firstRight = rightList.get(0);
double minDistanceToSplitValue;
double splitValue;
if (dimension == 0) {
minDistanceToSplitValue = (firstRight.x - lastLeft.x) / 2;
splitValue = lastLeft.x + Math.abs(minDistanceToSplitValue);
} else if (dimension == 1) {
minDistanceToSplitValue = (firstRight.y - lastLeft.y) / 2;
splitValue = lastLeft.y + Math.abs(minDistanceToSplitValue);
} else {
minDistanceToSplitValue = (firstRight.z - lastLeft.z) / 2;
splitValue = lastLeft.z + Math.abs(minDistanceToSplitValue);
}
node.splitValue = splitValue;
node.minSquareDistance = minDistanceToSplitValue
* minDistanceToSplitValue;
/** Call next level */
depth++;
node.left = createTreeRecursive(depth, leftList);
node.right = createTreeRecursive(depth, rightList);
return node;
}
/**
* Return a sublist representing the left or right half of a List. Size of
* recList must be at least 2 !
*
* IMPORTANT !!!!! Note: The original list must not be modified after
* extracting this sublist, as the returned subList is still backed by the
* original list.
*/
List getHalfOf(List xyzList, boolean leftHalf) {
int mid = xyzList.size() / 2;
if (leftHalf) {
return xyzList.subList(0, mid);
} else {
return xyzList.subList(mid, xyzList.size());
}
}
private void sortWayPointListByDimension(List wayPointList, int sortBy) {
XYZComparator comparator = comparators[sortBy];
Collections.sort(wayPointList, comparator);
}
class XYZComparator implements Comparator {
private int sortBy;
public XYZComparator(int sortBy) {
this.sortBy = sortBy;
}
@Override
public int compare(XYZ lhs, XYZ rhs) {
double diff;
if (sortBy == 0) {
diff = lhs.x - rhs.x;
} else if (sortBy == 1) {
diff = lhs.y - rhs.y;
} else {
diff = lhs.z - rhs.z;
}
if (diff > 0) {
return 1;
} else if (diff < 0) {
return -1;
} else {
return 0;
}
}
}
/** 3 Dimensional coordinates of a waypoint. */
static class XYZ {
double x;
double y;
double z;
// Keep also the original waypoint
LatLng wp;
}
/** Node of the KDTree */
public static class KDTNode {
KDTNode left;
KDTNode right;
boolean isLeaf;
/** latitude or longitude of the nodes division line. */
double splitValue;
/** Distance between division line and first point. */
double minSquareDistance;
/**
* Depth of the node in the tree. Depth 0,3,6.. devides the tree in the
* x-axis, depth 1,4,7,.. devides the tree in the y-axis and depth
* 2,5,8... devides the tree in the z axis.
*/
int depth;
/** The Waypoint in case the node is a leaf node. */
XYZ xyz;
}
/** Holds the result of a tree traversal. */
static class KDTResult {
LatLng nearestWp;
// We use the square of the distance to avoid square-root operations.
double squareDistance;
}
}
And here is the unit test:
public void testSOExample() {
KDTree tree = new KDTree();
LatLng Bangalore = new LatLng(12.971599, 77.594563);
LatLng Delhi = new LatLng(28.635308, 77.224960);
LatLng Mumbai = new LatLng(19.075984, 72.877656);
LatLng Chennai = new LatLng(13.052414, 80.250825);
LatLng Kolkata = new LatLng(22.572646, 88.363895);
List cities = Arrays.asList(new LatLng[] { Bangalore, Delhi,
Mumbai, Chennai, Kolkata });
KDTree.KDTNode root = tree.createTree(cities);
LatLng Hyderabad = new LatLng(17.385044, 78.486671);
LatLng nearestWp = tree.findNearestWp(root, Hyderabad);
assertEquals(nearestWp, Bangalore);
}