image information along a polar coordinate system

后端 未结 2 1006
予麋鹿
予麋鹿 2020-12-05 05:10

I have a set of png images that I would like to process with Python and associated tools. Each image represents a physical object with known dimensions.

In each imag

2条回答
  •  一整个雨季
    2020-12-05 05:46

    What you're describing isn't exactly image processing in the traditional sense, but it's fairly easy to do with numpy, etc.

    Here's a rather large example doing some of the things you mentioned to get you pointed in the right direction... Note that the example images all show results for the origin at the center of the image, but the functions take an origin argument, so you should be able to directly adapt things for your purposes.

    import numpy as np
    import scipy as sp
    import scipy.ndimage
    
    import Image
    
    import matplotlib.pyplot as plt
    
    def main():
        im = Image.open('mri_demo.png')
        im = im.convert('RGB')
        data = np.array(im)
    
        plot_polar_image(data, origin=None)
        plot_directional_intensity(data, origin=None)
    
        plt.show()
    
    def plot_directional_intensity(data, origin=None):
        """Makes a cicular histogram showing average intensity binned by direction
        from "origin" for each band in "data" (a 3D numpy array). "origin" defaults
        to the center of the image."""
        def intensity_rose(theta, band, color):
            theta, band = theta.flatten(), band.flatten()
            intensities, theta_bins = bin_by(band, theta)
            mean_intensity = map(np.mean, intensities)
            width = np.diff(theta_bins)[0]
            plt.bar(theta_bins, mean_intensity, width=width, color=color)
            plt.xlabel(color + ' Band')
            plt.yticks([])
    
        # Make cartesian coordinates for the pixel indicies
        # (The origin defaults to the center of the image)
        x, y = index_coords(data, origin)
    
        # Convert the pixel indices into polar coords.
        r, theta = cart2polar(x, y)
    
        # Unpack bands of the image
        red, green, blue = data.T
    
        # Plot...
        plt.figure()
    
        plt.subplot(2,2,1, projection='polar')
        intensity_rose(theta, red, 'Red')
    
        plt.subplot(2,2,2, projection='polar')
        intensity_rose(theta, green, 'Green')
    
        plt.subplot(2,1,2, projection='polar')
        intensity_rose(theta, blue, 'Blue')
    
        plt.suptitle('Average intensity as a function of direction')
    
    def plot_polar_image(data, origin=None):
        """Plots an image reprojected into polar coordinages with the origin
        at "origin" (a tuple of (x0, y0), defaults to the center of the image)"""
        polar_grid, r, theta = reproject_image_into_polar(data, origin)
        plt.figure()
        plt.imshow(polar_grid, extent=(theta.min(), theta.max(), r.max(), r.min()))
        plt.axis('auto')
        plt.ylim(plt.ylim()[::-1])
        plt.xlabel('Theta Coordinate (radians)')
        plt.ylabel('R Coordinate (pixels)')
        plt.title('Image in Polar Coordinates')
    
    def index_coords(data, origin=None):
        """Creates x & y coords for the indicies in a numpy array "data".
        "origin" defaults to the center of the image. Specify origin=(0,0)
        to set the origin to the lower left corner of the image."""
        ny, nx = data.shape[:2]
        if origin is None:
            origin_x, origin_y = nx // 2, ny // 2
        else:
            origin_x, origin_y = origin
        x, y = np.meshgrid(np.arange(nx), np.arange(ny))
        x -= origin_x
        y -= origin_y
        return x, y
    
    def cart2polar(x, y):
        r = np.sqrt(x**2 + y**2)
        theta = np.arctan2(y, x)
        return r, theta
    
    def polar2cart(r, theta):
        x = r * np.cos(theta)
        y = r * np.sin(theta)
        return x, y
    
    
    def bin_by(x, y, nbins=30):
        """Bin x by y, given paired observations of x & y.
        Returns the binned "x" values and the left edges of the bins."""
        bins = np.linspace(y.min(), y.max(), nbins+1)
        # To avoid extra bin for the max value
        bins[-1] += 1 
    
        indicies = np.digitize(y, bins)
    
        output = []
        for i in xrange(1, len(bins)):
            output.append(x[indicies==i])
    
        # Just return the left edges of the bins
        bins = bins[:-1]
    
        return output, bins
    
    def reproject_image_into_polar(data, origin=None):
        """Reprojects a 3D numpy array ("data") into a polar coordinate system.
        "origin" is a tuple of (x0, y0) and defaults to the center of the image."""
        ny, nx = data.shape[:2]
        if origin is None:
            origin = (nx//2, ny//2)
    
        # Determine that the min and max r and theta coords will be...
        x, y = index_coords(data, origin=origin)
        r, theta = cart2polar(x, y)
    
        # Make a regular (in polar space) grid based on the min and max r & theta
        r_i = np.linspace(r.min(), r.max(), nx)
        theta_i = np.linspace(theta.min(), theta.max(), ny)
        theta_grid, r_grid = np.meshgrid(theta_i, r_i)
    
        # Project the r and theta grid back into pixel coordinates
        xi, yi = polar2cart(r_grid, theta_grid)
        xi += origin[0] # We need to shift the origin back to 
        yi += origin[1] # back to the lower-left corner...
        xi, yi = xi.flatten(), yi.flatten()
        coords = np.vstack((xi, yi)) # (map_coordinates requires a 2xn array)
    
        # Reproject each band individually and the restack
        # (uses less memory than reprojection the 3-dimensional array in one step)
        bands = []
        for band in data.T:
            zi = sp.ndimage.map_coordinates(band, coords, order=1)
            bands.append(zi.reshape((nx, ny)))
        output = np.dstack(bands)
        return output, r_i, theta_i
    
    if __name__ == '__main__':
        main()
    

    Original Image:

    MRI Demo

    Projected into polar coordinates:

    Image in Polar Coordinates

    Intensity as a function of direction from the center of the image: Circular histograms of image intensity

提交回复
热议问题