Is there a SciPy function or NumPy function or module for Python that calculates the running mean of a 1D array given a specific window?
A bit late to the party, but I've made my own little function that does NOT wrap around the ends or pads with zeroes that are then used to find the average as well. As a further treat is, that it also re-samples the signal at linearly spaced points. Customize the code at will to get other features.
The method is a simple matrix multiplication with a normalized Gaussian kernel.
def running_mean(y_in, x_in, N_out=101, sigma=1):
'''
Returns running mean as a Bell-curve weighted average at evenly spaced
points. Does NOT wrap signal around, or pad with zeros.
Arguments:
y_in -- y values, the values to be smoothed and re-sampled
x_in -- x values for array
Keyword arguments:
N_out -- NoOf elements in resampled array.
sigma -- 'Width' of Bell-curve in units of param x .
'''
N_in = size(y_in)
# Gaussian kernel
x_out = np.linspace(np.min(x_in), np.max(x_in), N_out)
x_in_mesh, x_out_mesh = np.meshgrid(x_in, x_out)
gauss_kernel = np.exp(-np.square(x_in_mesh - x_out_mesh) / (2 * sigma**2))
# Normalize kernel, such that the sum is one along axis 1
normalization = np.tile(np.reshape(sum(gauss_kernel, axis=1), (N_out, 1)), (1, N_in))
gauss_kernel_normalized = gauss_kernel / normalization
# Perform running average as a linear operation
y_out = gauss_kernel_normalized @ y_in
return y_out, x_out
A simple usage on a sinusoidal signal with added normal distributed noise: