Ok, here is the real world scenario: I\'m writing an application, and I have a class that represents a certain type of files (in my case this is photographs but that detail
The solution that I ended up using is this:
class memoize(object):
def __init__(self, cls):
self.cls = cls
self.__dict__.update(cls.__dict__)
# This bit allows staticmethods to work as you would expect.
for attr, val in cls.__dict__.items():
if type(val) is staticmethod:
self.__dict__[attr] = val.__func__
def __call__(self, *args):
key = '//'.join(map(str, args))
if key not in self.cls.instances:
self.cls.instances[key] = self.cls(*args)
return self.cls.instances[key]
And then you decorate the class with this, not __init__
. Although brandizzi provided me with that key piece of information, his example decorator didn't function as desired.
I found this concept quite subtle, but basically when you're using decorators in Python, you need to understand that the thing that gets decorated (whether it's a method or a class) is actually replaced by the decorator itself. So for example when I'd try to access Photograph.instances
or Camera.generate_id()
(a staticmethod), I couldn't actually access them because Photograph
doesn't actually refer to the original Photograph class, it refers to the memoized
function (from brandizzi's example).
To get around this, I had to create a decorator class that actually took all the attributes and static methods from the decorated class and exposed them as it's own. Almost like a subclass, except that the decorator class doesn't know ahead of time what classes it will be decorating, so it has to copy the attributes over after the fact.
The end result is that any instance of the memoize
class becomes an almost transparent wrapper around the actual class that it has decorated, with the exception that attempting to instantiate it (but really calling it) will provide you with cached copies when they're available.