I am trying to search through a Pandas Dataframe to find where it has a missing entry or a NaN entry.
Here is a dataframe that I am working with:
cl_
Check if the columns contain Nan
using .isnull()
and check for empty strings using .eq('')
, then join the two together using the bitwise OR operator |
.
Sum along axis 0
to find columns with missing data, then sum along axis 1
to the index locations for rows with missing data.
missing_cols, missing_rows = (
(df2.isnull().sum(x) | df2.eq('').sum(x))
.loc[lambda x: x.gt(0)].index
for x in (0, 1)
)
>>> df2.loc[missing_rows, missing_cols]
A2 A3
2 1.10035
5 -0.508501
6 NaN NaN
7 NaN NaN