I\'m trying to obtain a confidence interval on an exponential fit to some x,y
data (available here). Here\'s the MWE I have to find the best exponential fit to
Notice: the actual answer to obtaining the fitted curve's confidence interval is given by Ulrich here.
After some research (see here, here and 1.96) I came up with my own solution.
It accepts an arbitrary X% confidence interval and plots upper and lower curves.
Here's the MWE:
from pylab import *
from scipy.optimize import curve_fit
from scipy import stats
def func(x, a, b, c):
'''Exponential 3-param function.'''
return a * np.exp(b * x) + c
# Read data.
x, y = np.loadtxt('exponential_data.dat', unpack=True)
# Define confidence interval.
ci = 0.95
# Convert to percentile point of the normal distribution.
# See: https://en.wikipedia.org/wiki/Standard_score
pp = (1. + ci) / 2.
# Convert to number of standard deviations.
nstd = stats.norm.ppf(pp)
print nstd
# Find best fit.
popt, pcov = curve_fit(func, x, y)
# Standard deviation errors on the parameters.
perr = np.sqrt(np.diag(pcov))
# Add nstd standard deviations to parameters to obtain the upper confidence
# interval.
popt_up = popt + nstd * perr
popt_dw = popt - nstd * perr
# Plot data and best fit curve.
scatter(x, y)
x = linspace(11, 23, 100)
plot(x, func(x, *popt), c='g', lw=2.)
plot(x, func(x, *popt_up), c='r', lw=2.)
plot(x, func(x, *popt_dw), c='r', lw=2.)
text(12, 0.5, '{}% confidence interval'.format(ci * 100.))
show()