In Java:
class Base {
public Base() { System.out.println(\"Base::Base()\"); virt(); }
void virt() { System.out.println(\"Base::virt()\"); }
}
clas
Hopefully this will help:
When your line new Derived() executes, the first thing that happens is the memory allocation. The program will allocate a chunk of memory big enough to hold both the members of Base and Derrived. At this point, there is no object. It's just uninitialized memory.
When Base's constructor has completed, the memory will contain an object of type Base, and the class invariant for Base should hold. There is still no Derived object in that memory.
During the construction of base, the Base object is in a partially-constructed state, but the language rules trust you enough to let you call your own member functions on a partially-constructed object. The Derived object isn't partially constructed. It doesn't exist.
Your call to the virtual function ends up calling the base class's version because at that point in time, Base is the most derived type of the object. If it were to call Derived::virt, it would be invoking a member function of Derived with a this-pointer that is not of type Derrived, breaking type safety.
Logically, a class is something that gets constructed, has functions called on it, and then gets destroyed. You can't call member functions on an object that hasn't been constructed, and you can't call member functions on an object after it's been destroyed. This is fairly fundamental to OOP, the C++ language rules are just helping you avoid doing things that break this model.