I know about the \"Serving a Tensorflow Model\" page
https://www.tensorflow.org/serving/serving_basic
but those functions assume you\'re using tf.Session() w
If you try to use predictor with tensorflow > 1.6 you can get this Error :
signature_def_key "serving_default". Available signatures are ['predict']. Original error:
No SignatureDef with key 'serving_default' found in MetaGraphDef.
Here is working example which is tested on 1.7.0 :
First you need to define features length in dict format like this:
feature_spec = {'x': tf.FixedLenFeature([4],tf.float32)}
Then you have to build a function which have placeholder with same shape of features and return using tf.estimator.export.ServingInputReceiver
def serving_input_receiver_fn():
serialized_tf_example = tf.placeholder(dtype=tf.string,
shape=[None],
name='input_tensors')
receiver_tensors = {'inputs': serialized_tf_example}
features = tf.parse_example(serialized_tf_example, feature_spec)
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
Then just save with export_savedmodel :
classifier.export_savedmodel(dir_path, serving_input_receiver_fn)
full example code:
import os
from six.moves.urllib.request import urlopen
import numpy as np
import tensorflow as tf
dir_path = os.path.dirname('.')
IRIS_TRAINING = os.path.join(dir_path, "iris_training.csv")
IRIS_TEST = os.path.join(dir_path, "iris_test.csv")
feature_spec = {'x': tf.FixedLenFeature([4],tf.float32)}
def serving_input_receiver_fn():
serialized_tf_example = tf.placeholder(dtype=tf.string,
shape=[None],
name='input_tensors')
receiver_tensors = {'inputs': serialized_tf_example}
features = tf.parse_example(serialized_tf_example, feature_spec)
return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)
def main():
training_set = tf.contrib.learn.datasets.base.load_csv_with_header(
filename=IRIS_TRAINING,
target_dtype=np.int,
features_dtype=np.float32)
test_set = tf.contrib.learn.datasets.base.load_csv_with_header(
filename=IRIS_TEST,
target_dtype=np.int,
features_dtype=np.float32)
feature_columns = [tf.feature_column.numeric_column("x", shape=[4])]
classifier = tf.estimator.DNNClassifier(feature_columns=feature_columns,
hidden_units=[10, 20, 10],
n_classes=3,
model_dir=dir_path)
# Define the training inputs
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": np.array(training_set.data)},
y=np.array(training_set.target),
num_epochs=None,
shuffle=True)
# Train model.
classifier.train(input_fn=train_input_fn, steps=200)
classifier.export_savedmodel(dir_path, serving_input_receiver_fn)
if __name__ == "__main__":
main()
Now let's restore the model :
import tensorflow as tf
import os
dir_path = os.path.dirname('.') #current directory
exported_path= os.path.join(dir_path, "1536315752")
def main():
with tf.Session() as sess:
tf.saved_model.loader.load(sess, [tf.saved_model.tag_constants.SERVING], exported_path)
model_input= tf.train.Example(features=tf.train.Features(feature={
'x': tf.train.Feature(float_list=tf.train.FloatList(value=[6.4, 3.2, 4.5, 1.5]))
}))
predictor= tf.contrib.predictor.from_saved_model(exported_path)
input_tensor=tf.get_default_graph().get_tensor_by_name("input_tensors:0")
model_input=model_input.SerializeToString()
output_dict= predictor({"inputs":[model_input]})
print(" prediction is " , output_dict['scores'])
if __name__ == "__main__":
main()
Here is Ipython notebook demo example with data and explanation :