A (somewhat) outdated article explores ways to use decltype along with SFINAE to detect if a type supports certain operators, such as == or &
In C++11 the shortest most general solution I found was this one:
#include
template() < std::declval() )>
std::true_type supports_less_than_test(const T&);
std::false_type supports_less_than_test(...);
template using supports_less_than = decltype(supports_less_than_test(std::declval()));
#include
struct random_type{};
int main(){
std::cout << supports_less_than::value << std::endl; // prints '1'
std::cout << supports_less_than::value << std::endl; // prints '1'
std::cout << supports_less_than::value << std::endl; // prints '0'
}
Works with g++ 4.8.1 and clang++ 3.3
A more general solution for arbitrary operators (UPDATE 2014)
There is a more general solution that exploits the fact that all built-in operators are also accessible (and posibly specialized) through STD operator wrappers, such as std::less (binary) or std::negate (unary).
template()(std::declval()...))>
std::true_type supports_test(const F&, const T&...);
std::false_type supports_test(...);
template struct supports;
template struct supports
: decltype(supports_test(std::declval(), std::declval()...)){};
This can be used in a quite general way, especially in C++14, where type deduction is delayed to the operator wrapper call ("transparent operators").
For binary operators it can be used as:
#include
struct random_type{};
int main(){
std::cout << supports(double, double)>::value << std::endl; // '1'
std::cout << supports(int, int)>::value << std::endl; // '1'
std::cout << supports(random_type, random_type)>::value << std::endl; // '0'
}
For unary operators:
#include
struct random_type{};
int main(){
std::cout << supports(double)>::value << std::endl; // '1'
std::cout << supports(int)>::value << std::endl; // '1'
std::cout << supports(random_type)>::value << std::endl; // '0'
}
(With the C++11 standard library is a bit more complicated because there is no failure on instatiating decltype(std::less even if there is no operation defined for random_type, one can implement manually transparent operators in C++11, that are standard in C++14)
The syntax is quite smooth. I hope something like this is adopted in the standard.
Two extensions:
1) It works to detect raw-function applications:
struct random_type{};
random_type fun(random_type x){return x;}
int main(){
std::cout << supports::value << std::endl; // '0'
std::cout << supports::value << std::endl; // '0'
std::cout << supports::value << std::endl; // '1'
}
2) It can additionally detect if the result is convertible/comparable to a certain type, in this case double < double is supported but a compile-time false will be returned because the result is not the specified one.
std::cout << supports(std::result_of(double, double)>::type, random_type)>::value << std::endl; // '0'
Note: I just tried to compile the code with C++14 in http://melpon.org/wandbox/ and it didn't work. I think there is a problem with transparent operators (like std::less<>) in that implementation (clang++ 3.5 c++14), since when I implement my own less<> with automatic deduction it works well.