I have trained a binary classification model with CNN, and here is my code
model = Sequential()
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_si
Wanted to add this as a comment (but don't have high enough rep.) to @indraforyou's answer to correct for the issue mentioned in @mathtick's comment. To avoid the InvalidArgumentError: input_X:Y is both fed and fetched. exception, simply replace the line outputs = [layer.output for layer in model.layers] with outputs = [layer.output for layer in model.layers][1:], i.e.
adapting indraforyou's minimal working example:
from keras import backend as K
inp = model.input # input placeholder
outputs = [layer.output for layer in model.layers][1:] # all layer outputs except first (input) layer
functor = K.function([inp, K.learning_phase()], outputs ) # evaluation function
# Testing
test = np.random.random(input_shape)[np.newaxis,...]
layer_outs = functor([test, 1.])
print layer_outs
p.s. my attempts trying things such as outputs = [layer.output for layer in model.layers[1:]] did not work.