I\'ve been struggling looking for an understandable way to do this. I have four points, a StartPt, EndPoint, and Intersection points to represent the peak and valley in the
as3 version:
package
{
import flash.geom.Vector3D;
public class DrawingUtility
{
private var x1:Number;
private var y1:Number;
private var x2:Number;
private var y2:Number;
// linear equation solver utility for ai + bj = c and di + ej = f
private function solvexy(a:Number, b:Number, c:Number, d:Number, e:Number, f:Number):Vector.
{
var returnVal:Vector. = new Vector.();
var j:Number = (c - a / d * f) / (b - a * e / d);
var i:Number = (c - (b * j)) / a;
returnVal[0] = i;
returnVal[1] = j;
return returnVal;
}
// basis functions
private function b0(t:Number):Number {
return Math.pow(1 - t, 3);
}
private function b1(t:Number):Number {
return t * (1 - t) * (1 - t) * 3;
}
private function b2(t:Number):Number {
return (1 - t) * t * t * 3;
}
private function b3(t:Number):Number {
return Math.pow(t, 3);
}
private function bez4pts1(x0:Number, y0:Number, x4:Number, y4:Number, x5:Number, y5:Number, x3:Number, y3:Number):void
{
// find chord lengths
var c1:Number = Math.sqrt((x4 - x0) * (x4 - x0) + (y4 - y0) * (y4 - y0));
var c2:Number = Math.sqrt((x5 - x4) * (x5 - x4) + (y5 - y4) * (y5 - y4));
var c3:Number = Math.sqrt((x3 - x5) * (x3 - x5) + (y3 - y5) * (y3 - y5));
// guess "best" t
var t1:Number = c1 / (c1 + c2 + c3);
var t2:Number = (c1 + c2) / (c1 + c2 + c3);
// transform x1 and x2
var x1x2:Vector. = solvexy(b1(t1), b2(t1), x4 - (x0 * b0(t1)) - (x3 * b3(t1)), b1(t2), b2(t2), x5 - (x0 * b0(t2)) - (x3 * b3(t2)));
x1 = x1x2[0];
x2 = x1x2[1];
// transform y1 and y2
var y1y2:Vector. = solvexy(b1(t1), b2(t1), y4 - (y0 * b0(t1)) - (y3 * b3(t1)), b1(t2), b2(t2), y5 - (y0 * b0(t2)) - (y3 * b3(t2)));
y1 = y1y2[0];
y2 = y1y2[1];
}
public function BezierFromIntersection(startPt:Vector3D, int1:Vector3D, int2:Vector3D, endPt:Vector3D):Vector.
{
var returnVec:Vector. = new Vector.();
bez4pts1(startPt.x, startPt.y, int1.x, int1.y, int2.x, int2.y, endPt.x, endPt.y);
returnVec.push(startPt);
returnVec.push(new Vector3D(x1, y1));
returnVec.push(new Vector3D(x2, y2));
returnVec.push(endPt);
return returnVec;
}
}
}