How to plot scikit learn classification report?

后端 未结 10 2001
广开言路
广开言路 2020-12-04 18:20

Is it possible to plot with matplotlib scikit-learn classification report?. Let\'s assume I print the classification report like this:

print \'\\n*Classifica         


        
10条回答
  •  遥遥无期
    2020-12-04 18:46

    Expanding on Bin's answer:

    import matplotlib.pyplot as plt
    import numpy as np
    
    def show_values(pc, fmt="%.2f", **kw):
        '''
        Heatmap with text in each cell with matplotlib's pyplot
        Source: https://stackoverflow.com/a/25074150/395857 
        By HYRY
        '''
        from itertools import izip
        pc.update_scalarmappable()
        ax = pc.get_axes()
        #ax = pc.axes# FOR LATEST MATPLOTLIB
        #Use zip BELOW IN PYTHON 3
        for p, color, value in izip(pc.get_paths(), pc.get_facecolors(), pc.get_array()):
            x, y = p.vertices[:-2, :].mean(0)
            if np.all(color[:3] > 0.5):
                color = (0.0, 0.0, 0.0)
            else:
                color = (1.0, 1.0, 1.0)
            ax.text(x, y, fmt % value, ha="center", va="center", color=color, **kw)
    
    
    def cm2inch(*tupl):
        '''
        Specify figure size in centimeter in matplotlib
        Source: https://stackoverflow.com/a/22787457/395857
        By gns-ank
        '''
        inch = 2.54
        if type(tupl[0]) == tuple:
            return tuple(i/inch for i in tupl[0])
        else:
            return tuple(i/inch for i in tupl)
    
    
    def heatmap(AUC, title, xlabel, ylabel, xticklabels, yticklabels, figure_width=40, figure_height=20, correct_orientation=False, cmap='RdBu'):
        '''
        Inspired by:
        - https://stackoverflow.com/a/16124677/395857 
        - https://stackoverflow.com/a/25074150/395857
        '''
    
        # Plot it out
        fig, ax = plt.subplots()    
        #c = ax.pcolor(AUC, edgecolors='k', linestyle= 'dashed', linewidths=0.2, cmap='RdBu', vmin=0.0, vmax=1.0)
        c = ax.pcolor(AUC, edgecolors='k', linestyle= 'dashed', linewidths=0.2, cmap=cmap)
    
        # put the major ticks at the middle of each cell
        ax.set_yticks(np.arange(AUC.shape[0]) + 0.5, minor=False)
        ax.set_xticks(np.arange(AUC.shape[1]) + 0.5, minor=False)
    
        # set tick labels
        #ax.set_xticklabels(np.arange(1,AUC.shape[1]+1), minor=False)
        ax.set_xticklabels(xticklabels, minor=False)
        ax.set_yticklabels(yticklabels, minor=False)
    
        # set title and x/y labels
        plt.title(title)
        plt.xlabel(xlabel)
        plt.ylabel(ylabel)      
    
        # Remove last blank column
        plt.xlim( (0, AUC.shape[1]) )
    
        # Turn off all the ticks
        ax = plt.gca()    
        for t in ax.xaxis.get_major_ticks():
            t.tick1On = False
            t.tick2On = False
        for t in ax.yaxis.get_major_ticks():
            t.tick1On = False
            t.tick2On = False
    
        # Add color bar
        plt.colorbar(c)
    
        # Add text in each cell 
        show_values(c)
    
        # Proper orientation (origin at the top left instead of bottom left)
        if correct_orientation:
            ax.invert_yaxis()
            ax.xaxis.tick_top()       
    
        # resize 
        fig = plt.gcf()
        #fig.set_size_inches(cm2inch(40, 20))
        #fig.set_size_inches(cm2inch(40*4, 20*4))
        fig.set_size_inches(cm2inch(figure_width, figure_height))
    
    
    
    def plot_classification_report(classification_report, title='Classification report ', cmap='RdBu'):
        '''
        Plot scikit-learn classification report.
        Extension based on https://stackoverflow.com/a/31689645/395857 
        '''
        lines = classification_report.split('\n')
    
        classes = []
        plotMat = []
        support = []
        class_names = []
        for line in lines[2 : (len(lines) - 2)]:
            t = line.strip().split()
            if len(t) < 2: continue
            classes.append(t[0])
            v = [float(x) for x in t[1: len(t) - 1]]
            support.append(int(t[-1]))
            class_names.append(t[0])
            print(v)
            plotMat.append(v)
    
        print('plotMat: {0}'.format(plotMat))
        print('support: {0}'.format(support))
    
        xlabel = 'Metrics'
        ylabel = 'Classes'
        xticklabels = ['Precision', 'Recall', 'F1-score']
        yticklabels = ['{0} ({1})'.format(class_names[idx], sup) for idx, sup  in enumerate(support)]
        figure_width = 25
        figure_height = len(class_names) + 7
        correct_orientation = False
        heatmap(np.array(plotMat), title, xlabel, ylabel, xticklabels, yticklabels, figure_width, figure_height, correct_orientation, cmap=cmap)
    
    
    def main():
        sampleClassificationReport = """             precision    recall  f1-score   support
    
              Acacia       0.62      1.00      0.76        66
              Blossom       0.93      0.93      0.93        40
              Camellia       0.59      0.97      0.73        67
              Daisy       0.47      0.92      0.62       272
              Echium       1.00      0.16      0.28       413
    
            avg / total       0.77      0.57      0.49       858"""
    
    
        plot_classification_report(sampleClassificationReport)
        plt.savefig('test_plot_classif_report.png', dpi=200, format='png', bbox_inches='tight')
        plt.close()
    
    if __name__ == "__main__":
        main()
        #cProfile.run('main()') # if you want to do some profiling
    

    outputs:

    Example with more classes (~40):

提交回复
热议问题