I was stuck in solving the following interview practice question:
I have to write a function:
int triangle(int[] A);
that given a zero-
First of all, you can sort your sequence. For the sorted sequence it's enough to check that A[i] + A[j] > A[k] for i < j < k, because A[i] + A[k] > A[k] > A[j] etc., so the other 2 inequalities are automatically true.
(From now on, i < j < k.)
Next, it's enough to check that A[i] + A[j] > A[j+1], because other A[k] are even bigger (so if the inequality holds for some k, it holds for k = j + 1 as well).
Next, it's enough to check that A[j-1] + A[j] > A[j+1], because other A[i] are even smaller (so if inequality holds for some i, it holds for i = j - 1 as well).
So, you have just a linear check: you need to check whether for at least one j A[j-1] + A[j] > A[j+1] holds true.
Altogether O(N log N) {sorting} + O(N) {check} = O(N log N).
Addressing the comment about negative numbers: indeed, this is what I didn't consider in the original solution. Considering the negative numbers doesn't change the solution much, since no negative number can be a part of triangle triple. Indeed, if A[i], A[j] and A[k] form a triangle triple, then A[i] + A[j] > A[k], A[i] + A[k] > A[j], which implies 2 * A[i] + A[j] + A[k] > A[k] + A[j], hence 2 * A[i] > 0, so A[i] > 0 and by symmetry A[j] > 0, A[k] > 0.
This means that we can safely remove negative numbers and zeroes from the sequence, which is done in O(log n) after sorting.