How to get Best Estimator on GridSearchCV (Random Forest Classifier Scikit)

前端 未结 2 1251
遥遥无期
遥遥无期 2020-12-04 16:49

I\'m running GridSearch CV to optimize the parameters of a classifier in scikit. Once I\'m done, I\'d like to know which parameters were chosen as the best.

Whenever

2条回答
  •  旧巷少年郎
    2020-12-04 17:18

    You have to fit your data before you can get the best parameter combination.

    from sklearn.grid_search import GridSearchCV
    from sklearn.datasets import make_classification
    from sklearn.ensemble import RandomForestClassifier
    # Build a classification task using 3 informative features
    X, y = make_classification(n_samples=1000,
                               n_features=10,
                               n_informative=3,
                               n_redundant=0,
                               n_repeated=0,
                               n_classes=2,
                               random_state=0,
                               shuffle=False)
    
    
    rfc = RandomForestClassifier(n_jobs=-1,max_features= 'sqrt' ,n_estimators=50, oob_score = True) 
    
    param_grid = { 
        'n_estimators': [200, 700],
        'max_features': ['auto', 'sqrt', 'log2']
    }
    
    CV_rfc = GridSearchCV(estimator=rfc, param_grid=param_grid, cv= 5)
    CV_rfc.fit(X, y)
    print CV_rfc.best_params_
    

提交回复
热议问题