I\'m running GridSearch CV to optimize the parameters of a classifier in scikit. Once I\'m done, I\'d like to know which parameters were chosen as the best.
Whenever
You have to fit your data before you can get the best parameter combination.
from sklearn.grid_search import GridSearchCV
from sklearn.datasets import make_classification
from sklearn.ensemble import RandomForestClassifier
# Build a classification task using 3 informative features
X, y = make_classification(n_samples=1000,
n_features=10,
n_informative=3,
n_redundant=0,
n_repeated=0,
n_classes=2,
random_state=0,
shuffle=False)
rfc = RandomForestClassifier(n_jobs=-1,max_features= 'sqrt' ,n_estimators=50, oob_score = True)
param_grid = {
'n_estimators': [200, 700],
'max_features': ['auto', 'sqrt', 'log2']
}
CV_rfc = GridSearchCV(estimator=rfc, param_grid=param_grid, cv= 5)
CV_rfc.fit(X, y)
print CV_rfc.best_params_