I have a Spark Dataframe in that consists of a series of dates:
from pyspark.sql import SQLContext
from pyspark.sql import Row
from pyspark.sql.types import
This can be done in spark-sql by converting the string date to timestamp and then getting the difference.
1: Convert to timestamp:
CAST(UNIX_TIMESTAMP(MY_COL_NAME,'dd-MMM-yy') as TIMESTAMP
2: Get the difference between dates using datediff function.
This will be combined in a nested function like:
spark.sql("select COL_1, COL_2, datediff( CAST( UNIX_TIMESTAMP( COL_1,'dd-MMM-yy') as TIMESTAMP), CAST( UNIX_TIMESTAMP( COL_2,'dd-MMM-yy') as TIMESTAMP) ) as LAG_in_days from MyTable")
Below is the result:
+---------+---------+-----------+
| COL_1| COL_2|LAG_in_days|
+---------+---------+-----------+
|24-JAN-17|16-JAN-17| 8|
|19-JAN-05|18-JAN-05| 1|
|23-MAY-06|23-MAY-06| 0|
|18-AUG-06|17-AUG-06| 1|
+---------+---------+-----------+
Reference: https://docs-snaplogic.atlassian.net/wiki/spaces/SD/pages/2458071/Date+Functions+and+Properties+Spark+SQL