How to count total number of trainable parameters in a tensorflow model?

后端 未结 7 1253
清酒与你
清酒与你 2020-12-04 15:41

Is there a function call or another way to count the total number of parameters in a tensorflow model?

By parameters I mean: an N dim vector of trainable variables h

7条回答
  •  长情又很酷
    2020-12-04 16:08

    Loop over the shape of every variable in tf.trainable_variables().

    total_parameters = 0
    for variable in tf.trainable_variables():
        # shape is an array of tf.Dimension
        shape = variable.get_shape()
        print(shape)
        print(len(shape))
        variable_parameters = 1
        for dim in shape:
            print(dim)
            variable_parameters *= dim.value
        print(variable_parameters)
        total_parameters += variable_parameters
    print(total_parameters)
    

    Update: I wrote an article to clarify the dynamic/static shapes in Tensorflow because of this answer: https://pgaleone.eu/tensorflow/2018/07/28/understanding-tensorflow-tensors-shape-static-dynamic/

提交回复
热议问题