When I run sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys}) I get InternalError: Blas SGEMM launch failed. Here is the full error and st
I encountered this problem and solved it by setting allow_soft_placement=True and gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.3), which specifically define the fraction of memory of GPU been used. I guess this has helped to avoid two tensorflow processes competing for the GPU memory.
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.3)
sess = tf.Session(config=tf.ConfigProto(
allow_soft_placement=True, log_device_placement=True))