Suppose you are given an mXn bitmap, represented by an array M[1..m,1.. n] whose entries are all 0 or 1. A all-one block is a subarray of the form M[i .. i0, j .. j0] in whi
Here is a O(N) implementation in C#.
The idea is to use a dynamic programming to build an accumulated Matrix that has the size of the biggest submatrix including the current cell itself.
public static int LargestSquareMatrixOfOne(int[,] original_mat)
{
int[,] AccumulatedMatrix = new int[original_mat.GetLength(0), original_mat.GetLength(1)];
AccumulatedMatrix[0, 0] = original_mat[0, 0];
int biggestSize = 1;
for (int i = 0; i < original_mat.GetLength(0); i++)
{
for (int j = 0; j < original_mat.GetLength(1); j++)
{
if (i > 0 && j > 0)
{
if (original_mat[i, j] == 1)
{
AccumulatedMatrix[i, j] = Math.Min(AccumulatedMatrix[i - 1, j - 1], (Math.Min(AccumulatedMatrix[i - 1, j], AccumulatedMatrix[i, j - 1]))) + 1;
if (AccumulatedMatrix[i, j] > biggestSize)
{
biggestSize = AccumulatedMatrix[i, j];
}
}
else
{
AccumulatedMatrix[i, j] = 0;
}
}
else if ( (i > 0 && j == 0) || (j > 0 && i == 0))
{
if (original_mat[i, j] == 1) { AccumulatedMatrix[i, j] = 1; }
else { AccumulatedMatrix[i, j] = 0; }
}
}
}
return biggestSize;
}