I\'m trying to implement the binary classification example using the IMDb dataset in Google Colab. I have implemented this model before. But when I tried to
What I have found is that TensorFlow 2.0 (I am using 2.0.0-alpha0) is not compatible with the latest version of Numpy i.e. v1.17.0 (and possibly v1.16.5+). As soon as TF2 is imported, it throws a huge list of FutureWarning, that looks something like this:
FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_qint8 = np.dtype([("qint8", np.int8, 1)])
/anaconda3/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:541: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_qint8 = np.dtype([("qint8", np.int8, 1)])
/anaconda3/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:542: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
_np_quint8 = np.dtype([("quint8", np.uint8, 1)])
/anaconda3/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:543: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'.
This also resulted in the allow_pickle error when tried to load imdb dataset from keras
I tried to use the following solution which worked just fine, but I had to do it every single project where I was importing TF2 or tf.keras.
np.load = lambda *a,**k: np_load_old(*a, allow_pickle=True, **k)
The easiest solution I found was to either install numpy 1.16.1 globally, or use compatible versions of tensorflow and numpy in a virtual environment.
My goal with this answer is to point out that its not just a problem with imdb.load_data, but a larger problem vaused by incompatibility of TF2 and Numpy versions and may result in many other hidden bugs or issues.