How to use sklearn fit_transform with pandas and return dataframe instead of numpy array?

后端 未结 5 1989
陌清茗
陌清茗 2020-12-04 08:38

I want to apply scaling (using StandardScaler() from sklearn.preprocessing) to a pandas dataframe. The following code returns a numpy array, so I lose all the column names a

5条回答
  •  误落风尘
    2020-12-04 09:15

    You could convert the DataFrame as a numpy array using as_matrix(). Example on a random dataset:

    Edit: Changing as_matrix() to values, (it doesn't change the result) per the last sentence of the as_matrix() docs above:

    Generally, it is recommended to use ‘.values’.

    import pandas as pd
    import numpy as np #for the random integer example
    df = pd.DataFrame(np.random.randint(0.0,100.0,size=(10,4)),
                  index=range(10,20),
                  columns=['col1','col2','col3','col4'],
                  dtype='float64')
    

    Note, indices are 10-19:

    In [14]: df.head(3)
    Out[14]:
        col1    col2    col3    col4
        10  3   38  86  65
        11  98  3   66  68
        12  88  46  35  68
    

    Now fit_transform the DataFrame to get the scaled_features array:

    from sklearn.preprocessing import StandardScaler
    scaled_features = StandardScaler().fit_transform(df.values)
    
    In [15]: scaled_features[:3,:] #lost the indices
    Out[15]:
    array([[-1.89007341,  0.05636005,  1.74514417,  0.46669562],
           [ 1.26558518, -1.35264122,  0.82178747,  0.59282958],
           [ 0.93341059,  0.37841748, -0.60941542,  0.59282958]])
    

    Assign the scaled data to a DataFrame (Note: use the index and columns keyword arguments to keep your original indices and column names:

    scaled_features_df = pd.DataFrame(scaled_features, index=df.index, columns=df.columns)
    
    In [17]:  scaled_features_df.head(3)
    Out[17]:
        col1    col2    col3    col4
    10  -1.890073   0.056360    1.745144    0.466696
    11  1.265585    -1.352641   0.821787    0.592830
    12  0.933411    0.378417    -0.609415   0.592830
    

    Edit 2:

    Came across the sklearn-pandas package. It's focused on making scikit-learn easier to use with pandas. sklearn-pandas is especially useful when you need to apply more than one type of transformation to column subsets of the DataFrame, a more common scenario. It's documented, but this is how you'd achieve the transformation we just performed.

    from sklearn_pandas import DataFrameMapper
    
    mapper = DataFrameMapper([(df.columns, StandardScaler())])
    scaled_features = mapper.fit_transform(df.copy(), 4)
    scaled_features_df = pd.DataFrame(scaled_features, index=df.index, columns=df.columns)
    

提交回复
热议问题