How would you create an algorithm to solve the following puzzle, \"Mastermind\"?
Your opponent has chosen four different colours from a set of six (yellow, blue, gre
Here's a link to pure Python solver for Mastermind(tm): http://code.activestate.com/recipes/496907-mastermind-style-code-breaking/ It has a simple version, a way to experiment with various guessing strategies, performance measurement, and an optional C accelerator.
The core of the recipe is short and sweet:
import random
from itertools import izip, imap
digits = 4
fmt = '%0' + str(digits) + 'd'
searchspace = tuple([tuple(map(int,fmt % i)) for i in range(0,10**digits)])
def compare(a, b, imap=imap, sum=sum, izip=izip, min=min):
count1 = [0] * 10
count2 = [0] * 10
strikes = 0
for dig1, dig2 in izip(a,b):
if dig1 == dig2:
strikes += 1
count1[dig1] += 1
count2[dig2] += 1
balls = sum(imap(min, count1, count2)) - strikes
return (strikes, balls)
def rungame(target, strategy, verbose=True, maxtries=15):
possibles = list(searchspace)
for i in xrange(maxtries):
g = strategy(i, possibles)
if verbose:
print "Out of %7d possibilities. I'll guess %r" % (len(possibles), g),
score = compare(g, target)
if verbose:
print ' ---> ', score
if score[0] == digits:
if verbose:
print "That's it. After %d tries, I won." % (i+1,)
break
possibles = [n for n in possibles if compare(g, n) == score]
return i+1
def strategy_allrand(i, possibles):
return random.choice(possibles)
if __name__ == '__main__':
hidden_code = random.choice(searchspace)
rungame(hidden_code, strategy_allrand)
Here is what the output looks like:
Out of 10000 possibilities. I'll guess (6, 4, 0, 9) ---> (1, 0)
Out of 1372 possibilities. I'll guess (7, 4, 5, 8) ---> (1, 1)
Out of 204 possibilities. I'll guess (1, 4, 2, 7) ---> (2, 1)
Out of 11 possibilities. I'll guess (1, 4, 7, 1) ---> (3, 0)
Out of 2 possibilities. I'll guess (1, 4, 7, 4) ---> (4, 0)
That's it. After 5 tries, I won.