To make my code more \"pythonic\" and faster, I use \"multiprocessing\" and a map function to send it a) the function and b) the range of iterations.
The implanted s
Sorry for being late but if all you need is a concurrent map, I added this functionality in tqdm>=4.42.0:
from tqdm.contrib.concurrent import process_map # or thread_map
import time
def _foo(my_number):
square = my_number * my_number
time.sleep(1)
return square
if __name__ == '__main__':
r = process_map(_foo, range(0, 30), max_workers=2)
References: https://tqdm.github.io/docs/contrib.concurrent/ and https://github.com/tqdm/tqdm/blob/master/examples/parallel_bars.py
It supports max_workers and chunksize and you can also easily switch from process_map to thread_map.