I want to apply my custom function (it uses an if-else ladder) to these six columns (ERI_Hispanic, ERI_AmerInd_AKNatv, ERI_Asian,
try this,
df.loc[df['eri_white']==1,'race_label'] = 'White'
df.loc[df['eri_hawaiian']==1,'race_label'] = 'Haw/Pac Isl.'
df.loc[df['eri_afr_amer']==1,'race_label'] = 'Black/AA'
df.loc[df['eri_asian']==1,'race_label'] = 'Asian'
df.loc[df['eri_nat_amer']==1,'race_label'] = 'A/I AK Native'
df.loc[(df['eri_afr_amer'] + df['eri_asian'] + df['eri_hawaiian'] + df['eri_nat_amer'] + df['eri_white']) > 1,'race_label'] = 'Two Or More'
df.loc[df['eri_hispanic']==1,'race_label'] = 'Hispanic'
df['race_label'].fillna('Other', inplace=True)
O/P:
lname fname rno_cd eri_afr_amer eri_asian eri_hawaiian \
0 MOST JEFF E 0 0 0
1 CRUISE TOM E 0 0 0
2 DEPP JOHNNY NaN 0 0 0
3 DICAP LEO NaN 0 0 0
4 BRANDO MARLON E 0 0 0
5 HANKS TOM NaN 0 0 0
6 DENIRO ROBERT E 0 1 0
7 PACINO AL E 0 0 0
8 WILLIAMS ROBIN E 0 0 1
9 EASTWOOD CLINT E 0 0 0
eri_hispanic eri_nat_amer eri_white rno_defined race_label
0 0 0 1 White White
1 1 0 0 White Hispanic
2 0 0 1 Unknown White
3 0 0 1 Unknown White
4 0 0 0 White Other
5 0 0 1 Unknown White
6 0 0 1 White Two Or More
7 0 0 1 White White
8 0 0 0 White Haw/Pac Isl.
9 0 0 1 White White
use .loc instead of apply.
it improves vectorization.
.loc works in simple manner, mask rows based on the condition, apply values to the freeze rows.
for more details visit, .loc docs
Performance metrics:
Accepted Answer:
def label_race (row):
if row['eri_hispanic'] == 1 :
return 'Hispanic'
if row['eri_afr_amer'] + row['eri_asian'] + row['eri_hawaiian'] + row['eri_nat_amer'] + row['eri_white'] > 1 :
return 'Two Or More'
if row['eri_nat_amer'] == 1 :
return 'A/I AK Native'
if row['eri_asian'] == 1:
return 'Asian'
if row['eri_afr_amer'] == 1:
return 'Black/AA'
if row['eri_hawaiian'] == 1:
return 'Haw/Pac Isl.'
if row['eri_white'] == 1:
return 'White'
return 'Other'
df=pd.read_csv('dataser.csv')
df = pd.concat([df]*1000)
%timeit df.apply(lambda row: label_race(row), axis=1)
1.15 s ± 46.5 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
My Proposed Answer:
def label_race(df):
df.loc[df['eri_white']==1,'race_label'] = 'White'
df.loc[df['eri_hawaiian']==1,'race_label'] = 'Haw/Pac Isl.'
df.loc[df['eri_afr_amer']==1,'race_label'] = 'Black/AA'
df.loc[df['eri_asian']==1,'race_label'] = 'Asian'
df.loc[df['eri_nat_amer']==1,'race_label'] = 'A/I AK Native'
df.loc[(df['eri_afr_amer'] + df['eri_asian'] + df['eri_hawaiian'] + df['eri_nat_amer'] + df['eri_white']) > 1,'race_label'] = 'Two Or More'
df.loc[df['eri_hispanic']==1,'race_label'] = 'Hispanic'
df['race_label'].fillna('Other', inplace=True)
df=pd.read_csv('s22.csv')
df = pd.concat([df]*1000)
%timeit label_race(df)
24.7 ms ± 1.7 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)