I need to compute x in the following way (legacy code):
x = numpy.where(b == 0, a, 1/b)
I suppose it worked in python-2.x (as
A old trick for handling 0 elements in an array division is to add a conditional value:
In [63]: 1/(b+(b==0))
Out[63]: array([1. , 1. , 0.5 , 0.33333333])
(I used this years ago in apl).
x = numpy.where(b == 0, a, 1/b) is evaluated in the same way as any other Python function. Each function argument is evaluated, and the value passed to the where function. There's no 'short-circuiting' or other method of bypassing bad values of 1/b.
So if 1/b returns a error you need to either change b so it doesn't do that, calculate it in context that traps traps the ZeroDivisionError, or skips the 1/b.
In [53]: 1/0
---------------------------------------------------------------------------
ZeroDivisionError Traceback (most recent call last)
in ()
----> 1 1/0
ZeroDivisionError: division by zero
In [54]: 1.0/0
---------------------------------------------------------------------------
ZeroDivisionError Traceback (most recent call last)
in ()
----> 1 1.0/0
ZeroDivisionError: float division by zero
In [55]: 1/np.array(0)
/usr/local/bin/ipython3:1: RuntimeWarning: divide by zero encountered in true_divide
#!/usr/bin/python3
Out[55]: inf
What are a and b? Scalars, arrays of some size?
where makes most sense if b (and maybe a) is an array:
In [59]: b = np.array([0,1,2,3])
The bare division gives me a warning, and an inf element:
In [60]: 1/b
/usr/local/bin/ipython3:1: RuntimeWarning: divide by zero encountered in true_divide
#!/usr/bin/python3
Out[60]: array([ inf, 1. , 0.5 , 0.33333333])
I could use where to replace that inf with something else, for example a nan:
In [61]: np.where(b==0, np.nan, 1/b)
/usr/local/bin/ipython3:1: RuntimeWarning: divide by zero encountered in true_divide
#!/usr/bin/python3
Out[61]: array([ nan, 1. , 0.5 , 0.33333333])
The warning can be silenced as @donkopotamus shows.
An alternative to seterr is errstate in a with context:
In [64]: with np.errstate(divide='ignore'):
...: x = np.where(b==0, np.nan, 1/b)
...:
In [65]: x
Out[65]: array([ nan, 1. , 0.5 , 0.33333333])
How to suppress the error message when dividing 0 by 0 using np.divide (alongside other floats)?