Is there a preferred way to keep the data type of a numpy
array fixed as int
(or int64
or whatever), while still having an element ins
Just wanted to add that in case you are trying to convert a float (1.143) vector to integer (1) that has NA converting to the new 'Int64' dtype will give you an error. In order to solve this you have to round the numbers and then do ".astype('Int64')"
s1 = pd.Series([1.434, 2.343, np.nan])
#without round() the next line returns an error
s1.astype('Int64')
#cannot safely cast non-equivalent float64 to int64
##with round() it works
s1.round().astype('Int64')
0 1
1 2
2 NaN
dtype: Int64
My use case is that I have a float series that I want to round to int, but when you do .round() a '*.0' at the end of the number remains, so you can drop that 0 from the end by converting to int.