I have a piece of code, but I want to pull up the performance. My code is:
lis = []
for i in range(6):
for j in range(6):
for k in range(6):
Test setup:
In [274]: lis = np.zeros((6,6),int)
In [275]: matrix1 = np.arange(36).reshape(6,6)
In [276]: matrix2 = np.arange(36*36).reshape(6,6,6,6)
In [277]: for i in range(6):
...: for j in range(6):
...: for k in range(6):
...: for l in range(6):
...: lis[i,j] += matrix1[k,l] * (2 * matrix2[i,j,k,l] - mat
...: rix2[i,k,j,l])
...:
In [278]: lis
Out[278]:
array([[-51240, -9660, 31920, 73500, 115080, 156660],
[ 84840, 126420, 168000, 209580, 251160, 292740],
[220920, 262500, 304080, 345660, 387240, 428820],
[357000, 398580, 440160, 481740, 523320, 564900],
[493080, 534660, 576240, 617820, 659400, 700980],
[629160, 670740, 712320, 753900, 795480, 837060]])
right?
I'm not sure that tensordot is the right tool; at least may not be the simplest. It certainly can't handle the matrix2 difference.
Let's start with an obvious substitution:
In [279]: matrix3 = 2*matrix2-matrix2.transpose(0,2,1,3)
In [280]: lis = np.zeros((6,6),int)
In [281]: for i in range(6):
...: for j in range(6):
...: for k in range(6):
...: for l in range(6):
...: lis[i,j] += matrix1[k,l] * matrix3[i,j,k,l]
tests ok - same lis.
Now it is easy to express this with einsum - just replicate the indices
In [284]: np.einsum('kl,ijkl->ij', matrix1, matrix3)
Out[284]:
array([[-51240, -9660, 31920, 73500, 115080, 156660],
[ 84840, 126420, 168000, 209580, 251160, 292740],
[220920, 262500, 304080, 345660, 387240, 428820],
[357000, 398580, 440160, 481740, 523320, 564900],
[493080, 534660, 576240, 617820, 659400, 700980],
[629160, 670740, 712320, 753900, 795480, 837060]])
elementwise product plus summation on two axes also works; and an equivalent tensordot (specifying which axes to sum over)
(matrix1*matrix3).sum(axis=(2,3))
np.tensordot(matrix1, matrix3, [[0,1],[2,3]])