In the MIPS ISA, there\'s a zero register ($r0) which always gives a value of zero. This allows the processor to:
The concept of a zero register is not new. I first encountered it on a CDC 6600 mainframe, which dates back to the mid-to-late 1960's. In some ways it was one of the first RISC processors, and was the world's fastest computer for 5 years. In that architecture, the "B0" register was hardwired to always be zero. http://en.wikipedia.org/wiki/CDC_6600
The benefit of such a register is primarily that it simplified the instruction set. When the decoding and orchestration of simple and regular instruction sets can be implemented without microcode, it increases performance. In addition, for the 6600 like most LSI chips today, the time spent for a signal to travel the length a "wire" becomes on of the key factors in execution speed, and keeping the instruction set simple (and avoiding microcode) allows less transistors, and results in shorter circuit paths.