pandas group by and assign a group id then ungroup

前端 未结 3 546
我寻月下人不归
我寻月下人不归 2020-12-03 20:10

I have a large data set in the following format:

id, socialmedia
1, facebook
2, facebook
3, google
4, google
5, google
6, twitter
7, google
8, twitter
9, sn         


        
3条回答
  •  挽巷
    挽巷 (楼主)
    2020-12-03 21:02

    We could also create a dictionary and map it:

    import pandas as pd
    
    df = pd.DataFrame(dict(id=range(1,5),social=["Facebook","Twitter","Facebook","Google"]))
    
    d = dict((k,v) for v,k in enumerate(df['social'].unique(),1))
    df['groupid'] = df['social'].map(m)
    
    print(df)
    

    Returns

       id    social  groupid
    0   1  Facebook        1
    1   2   Twitter        2
    2   3  Facebook        1
    3   4    Google        3
    

    Or one-line like this:

    df['groupid'] = df['social'].map({k:v for v,k in enumerate(df['social'].unique(),1)})
    

    Timings:

    %timeit df['grpId']=df.groupby('social').ngroup().add(1)
    %timeit df['grpId']=pd.factorize(df['social'])[0]+1
    %timeit df['grpId']=df['social'].astype('category').cat.codes.add(1)
    %timeit df['groupid'] = df['social'].map(dict((k,v) for v,k in enumerate(df['social'].unique(),1)))
    

    Returns

    100 loops, best of 3: 1.5 ms per loop   <- Wen1
    1000 loops, best of 3: 493 µs per loop  <- Wen2
    1000 loops, best of 3: 990 µs per loop  <- Wen3
    1000 loops, best of 3: 802 µs per loop  <- Antonvbr
    

提交回复
热议问题