Trying to collapse a nominal categorical vector by combining low frequency counts into an \'Other\' category:
The data (column of a dataframe) looks like this, and c
I'm including an option that uses makes the change to the factor levels attribute as an alternative to Ananda Mahto's answer. The efficiency (based on a factor of 10,000 observations with 10 factors) isn't much different (about 150 microseconds), so your choice of option would likely depend on if you want to work with factors or with strings. Personally, I'd choose to work with strings and would use Ananda's approach.
#* Using a list assignment to levels
combineByThreshold <- function(x, threshold = .02, label = "Other")
{
prop <- prop.table(table(x))
combine <- which(prop < threshold)
levels(x) <- c(mapply(identity, levels(x)[-combine], SIMPLIFY = FALSE, USE.NAMES=TRUE),
setNames(list(levels(x)[combine]),
"Other"))
x
}
#* Ananda Mahto
condenseMe <- function(vector, threshold = 0.02, newName = "Other") {
toCondense <- names(which(prop.table(table(vector)) < 0.02))
vector[vector %in% toCondense] <- newName
vector
}
#* F.R.
collapsecategory <- function(x, p) {
levels_len = length(levels(x))
levels(x)[levels_len+1] = 'Other'
y = table(x)/length(x)
y1 = as.vector(y)
y2 = names(y)
y2_len = length(y2)
for (i in 1:y2_len) {
if (y1[i]<=p){
x[x==y2[i]] = 'Other'
}
}
x <- droplevels(x)
x
}
#* Steven Le
filtered_data <- State %>% group_by(ID) %>% summarise(n = n(),
freq = n/nrow(State),
above_thresh = freq > 0.2)
filtered_data$State[filtered_data$above_thres == TRUE] <- "above_0.2"
#**************************
#* Comparison of methods
library(microbenchmark)
library(dplyr)
x <- sample(LETTERS[1:10], 10000,
prob = rep(c(1, 20), c(4, 6)),
replace = TRUE)
x <- as.factor(x)
DF <- data.frame(x = x) %>%
mutate(x = as.character(x),
orig = x)
microbenchmark(
combineByThreshold = combineByThreshold(x),
condenseMe = condenseMe(as.character(x)),
collapsecategory = collapsecategory(x, .02),
dplyr = {Ref <- DF %>%
group_by(orig, x) %>%
summarise(n = n(),
freq = n/nrow(DF),
above_thresh = freq < 0.02)
Ref$x[Ref$above_thres == TRUE] <- "Other"
DF <- left_join(DF[, "orig", drop=FALSE], Ref[, c("orig", "x")],
by = c("orig" = "orig"))
}
)
Unit: microseconds
expr min lq mean median uq max neval
combineByThreshold 694.108 715.0740 872.8452 735.4550 771.5235 3403.971 100
condenseMe 756.275 771.9635 893.2784 789.5585 827.9730 3753.223 100
collapsecategory 3679.032 3713.1955 4156.7700 3772.1375 3949.4030 6852.219 100
dplyr 4101.596 4229.0105 4515.9785 4408.6220 4602.4560 7772.711 100
Brief disclaimer: I may not have represented Steven Le's answer fairly here. I interpreted his answer as generating a reference table of the new factor levels that could be merged back into the original data. Someone please correct me if I've misinterpreted.