I use minimize from the Scipy module on Python 3.4, specifically:
resultats=minimize(margin_rate, iniprices, method=\'SLSQP\',
jac=margin_rate_deriv, bounds=
No. What you can do is start the optimizer in a separate process, keep track of how long it has been running and terminate it if necessary:
from multiprocessing import Process, Queue
import time
import random
from __future__ import print_function
def f(param, queue):
#do the minimization and add result to queue
#res = minimize(param)
#queue.put(res)
#to make this a working example I'll just sleep a
#a random amount of time
sleep_amount = random.randint(1, 10)
time.sleep(sleep_amount)
res = param*sleep_amount
queue.put(res)
q = Queue()
p = Process(target=f, args=(2.2, q))
max_time = 3
t0 = time.time()
p.start()
while time.time() - t0 < max_time:
p.join(timeout=1)
if not p.is_alive():
break
if p.is_alive():
#process didn't finish in time so we terminate it
p.terminate()
result = None
else:
result = q.get()
print(result)