I am trying to show by example that the prefix increment is more efficient than the postfix increment.
In theory this makes sense: i++ needs to be able to return the
In response to Mihail, this is a somewhat more portable version his code:
#include
#include
using namespace std;
#define SOME_BIG_CONSTANT 100000000
#define OUTER 40
int main( int argc, char * argv[] ) {
int d = 0;
time_t now = time(0);
if ( argc == 1 ) {
for ( int n = 0; n < OUTER; n++ ) {
int i = 0;
while(i < SOME_BIG_CONSTANT) {
d += i++;
}
}
}
else {
for ( int n = 0; n < OUTER; n++ ) {
int i = 0;
while(i < SOME_BIG_CONSTANT) {
d += ++i;
}
}
}
int t = time(0) - now;
printf( "%d\n", t );
return d % 2;
}
The outer loops are there to allow me to fiddle the timings to get something suitable on my platform.
I don't use VC++ any more, so i compiled it (on Windows) with:
g++ -O3 t.cpp
I then ran it by alternating:
a.exe
and
a.exe 1
My timing results were approximately the same for both cases. Sometimes one version would be faster by up to 20% and sometimes the other. This I would guess is due to other processes running on my system.