Is there a way to apply a list of functions to each column in a DataFrame like the DataFrameGroupBy.agg function does? I found an ugly way to do it like this:
In the general case where you have arbitrary functions and column names, you could do this:
df.apply(lambda r: pd.Series({'mean': r.mean(), 'std': r.std()})).transpose() mean std one 5.366303 2.612738 two 4.858691 2.986567