I would like to sum (or perform other aggregate functions too) on the array column using SparkSQL.
I have a table as
+-------+-------+-
Since Spark 2.4 you can slice with the slice function:
import org.apache.spark.sql.functions.slice
val df = Seq(
(10, "Finance", Seq(100, 200, 300, 400, 500)),
(20, "IT", Seq(10, 20, 50, 100))
).toDF("dept_id", "dept_nm", "emp_details")
val dfSliced = df.withColumn(
"emp_details_sliced",
slice($"emp_details", 1, 3)
)
dfSliced.show(false)
+-------+-------+-------------------------+------------------+
|dept_id|dept_nm|emp_details |emp_details_sliced|
+-------+-------+-------------------------+------------------+
|10 |Finance|[100, 200, 300, 400, 500]|[100, 200, 300] |
|20 |IT |[10, 20, 50, 100] |[10, 20, 50] |
+-------+-------+-------------------------+------------------+
and sum arrays with aggregate:
dfSliced.selectExpr(
"*",
"aggregate(emp_details, 0, (x, y) -> x + y) as details_sum",
"aggregate(emp_details_sliced, 0, (x, y) -> x + y) as details_sliced_sum"
).show
+-------+-------+--------------------+------------------+-----------+------------------+
|dept_id|dept_nm| emp_details|emp_details_sliced|details_sum|details_sliced_sum|
+-------+-------+--------------------+------------------+-----------+------------------+
| 10|Finance|[100, 200, 300, 4...| [100, 200, 300]| 1500| 600|
| 20| IT| [10, 20, 50, 100]| [10, 20, 50]| 180| 80|
+-------+-------+--------------------+------------------+-----------+------------------+