I want to generate N random numbers drawn from a specif distribution (e.g uniform random) between [a,b] which sum to a constant C. I have tried a couple of solutions I could
In case you want the sample to follow a uniform distribution, the problem reduces to generate N random numbers with sum = 1. This, in turn, is a special case of the Dirichlet distribution but can also be computed more easily using the Exponential distribution. Here is how:
The p1..pN are uniformly distributed (in the simplex of dim N-1) and their sum is 1.
You can now multiply these pi by the constant C you want and translate them by summing some other constant A like this
qi := A + pi*C.
EDIT 3
In order to address some issues raised in the comments, let me add the following:
EDIT 2
One more issue has been raised in the comments:
Why rescaling a uniform sample does not suffice?
In other words, why should I bother to take negative logarithms?
The reason is that if we just rescale then the resulting sample won't distribute uniformly across the segment (0,1) (or [a,b] for the final sample.)
To visualize this let's think 2D, i.e., let's consider the case N=2. A uniform sample (v1,v2) corresponds to a random point in the square with origin (0,0) and corner (1,1). Now, when we normalize such a point dividing it by the sum s=v1+v2 what we are doing is projecting the point onto the diagonal as shown in the picture (keep in mind that the diagonal is the line x + y = 1):
But given that green lines, which are closer to the principal diagonal from (0,0) to (1,1), are longer than orange ones, which are closer to the axes x and y, the projections tend to accumulate more around the center of the projection line (in blue), where the scaled sample lives. This shows that a simple scaling won't produce a uniform sample on the depicted diagonal. On the other hand, it can be proven mathematically that the negative logarithms do produce the desired uniformity. So, instead of copypasting a mathematical proof I would invite everyone to implement both algorithms and check that the resulting plots behave as this answer describes.
(Note: here is a blog post on this interesting subject with an application to the Oil & Gas industry)