for (int front = 1; front < intArray.length; front++)
{
for (int i = 0; i < intArray.length - front; i++)
{
if (intArray[i] > intArray[i +
k=1(sigma k)n = n(n+1)/2
because:
s = 1 + 2 + ... + (n-1) + n
s = n + (n-1) + ... + 2 + 1
+)
===================================
2s = n*(n+1)
s = n(n+1)/2
in bubble sort,
(n-1) + (n-2) + ... + 1 + 0 times compares
which means, k=0(sigma k)n-1
, k=0(sigma k)n-1 equals [k=1(sigma k)n] - n
therefore, n(n+1)/2 - n = n(n-1)/2
which is 1/2(n^2-n) => O(1/2(n^2-n))
in big O notation, we remove constant, so
O(n^2-n)
n^2 is larger than n
O(n^2)