I have to format std::string with sprintf and send it into file stream. How can I do this?
Tested, Production Quality Answer
This answer handles the general case with standards compliant techniques. The same approach is given as an example on CppReference.com near the bottom of their page. Unlike their example, this code fits the question's requirements and is field tested in robotics and satellite applications. It also has improved commenting. Design quality is discussed further below.
#include
#include
#include
// requires at least C++11
const std::string vformat(const char * const zcFormat, ...) {
// initialize use of the variable argument array
va_list vaArgs;
va_start(vaArgs, zcFormat);
// reliably acquire the size
// from a copy of the variable argument array
// and a functionally reliable call to mock the formatting
va_list vaArgsCopy;
va_copy(vaArgsCopy, vaArgs);
const int iLen = std::vsnprintf(NULL, 0, zcFormat, vaArgsCopy);
va_end(vaArgsCopy);
// return a formatted string without risking memory mismanagement
// and without assuming any compiler or platform specific behavior
std::vector zc(iLen + 1);
std::vsnprintf(zc.data(), zc.size(), zcFormat, vaArgs);
va_end(vaArgs);
return std::string(zc.data(), iLen); }
#include
#include
#include
// demonstration of use
int main() {
std::time_t t = std::time(nullptr);
std::cerr
<< std::put_time(std::localtime(& t), "%D %T")
<< " [debug]: "
<< vformat("Int 1 is %d, Int 2 is %d, Int 3 is %d", 11, 22, 33)
<< std::endl;
return 0; }
Predictable Linear Efficiency
Two passes are necessities for a secure, reliable, and predictable reusable function per the question specifications. Presumptions about the distribution of sizes of vargs in a reusable function is bad programming style and should be avoided. In this case, arbitrarily large variable length representations of vargs is a key factor in choice of algorithm.
Retrying upon overflow is exponentially inefficient, which is another reason discussed when the C++11 standards committee discussed the above proposal to provide a dry run when the write buffer is null.
In the above production ready implementation, the first run is such a dry run to determine allocation size. No allocation occurs. Parsing of printf directives and the reading of vargs has been made extremely efficient over decades. Reusable code should be predictable, even if a small inefficiency for trivial cases must be sacrificed.
Security and Reliability
Andrew Koenig said to a small group of us after his lecture at a Cambridge event, "User functions shouldn't rely on the exploitation of a failure for unexceptional functionality." As usual, his wisdom has been shown true in the record since. Fixed and closed security bug issues often indicate retry hacks in the description of the hole exploited prior to the fix.
This is mentioned in the formal standards revision proposal for the null buffer feature in Alternative to sprintf, C9X Revision Proposal, ISO IEC Document WG14 N645/X3J11 96-008. An arbitrarily long string inserted per print directive, "%s," within the constraints of dynamic memory availability, is not an exception, and should not be exploited to produce, "Unexceptional functionality."
Consider the proposal along side the example code given at the bottom of the C++Reference.org page linked to in the first paragraph of this answer.
Also, the testing of failure cases is rarely as robust of success cases.
Portability
All major O.S. vendors provide compilers that fully support std::vsnprintf as part of the c++11 standards. Hosts running products of vendors that no longer maintain distributions should be furnished with g++ or clang++ for many reasons.
Stack Use
Stack use in the 1st call to std::vsnprintf will be less than or equal to that of the 2nd, and and it will be freed before the 2nd call begins. If the first call exceeds stack availability, then std::fprintf would fail too.