I\'m trying to setup an image recognition CNN with TensorFlow 2.0. To be able to analyze my image augmentation I\'d like to see the images I feed into the network in tensorb
You could do something like this to add input image to tensorboard
def scale(image, label):
return tf.cast(image, tf.float32) / 255.0, label
def augment(image, label):
return image, label # do nothing atm
file_writer = tf.summary.create_file_writer(logdir + "/images")
def plot_to_image(figure):
buf = io.BytesIO()
plt.savefig(buf, format='png')
plt.close(figure)
buf.seek(0)
image = tf.image.decode_png(buf.getvalue(), channels=4)
image = tf.expand_dims(image, 0)
return image
def image_grid():
"""Return a 5x5 grid of the MNIST images as a matplotlib figure."""
# Create a figure to contain the plot.
figure = plt.figure(figsize=(10, 10))
for i in range(25):
# Start next subplot.
plt.subplot(5, 5, i + 1, title=str(y_train[i]))
plt.xticks([])
plt.yticks([])
plt.grid(False)
image, _ = scale(x_train[i], y_train[i])
plt.imshow(x_train[i], cmap=plt.cm.binary)
return figure
# Prepare the plot
figure = image_grid()
# Convert to image and log
with file_writer.as_default():
tf.summary.image("Training data", plot_to_image(figure), step=0)
dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train))
dataset = dataset.map(scale).map(augment).batch(32)
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
model.fit(dataset, epochs=5, callbacks=[tf.keras.callbacks.TensorBoard(log_dir=logdir)])